1
|
|
|
"""Implementation of Runner utility class.""" |
2
|
|
|
|
3
|
|
|
import datetime |
4
|
|
|
import json |
5
|
|
|
import os |
6
|
|
|
import logging |
7
|
|
|
|
8
|
|
|
import xlsxwriter |
9
|
|
|
from numpy import ( |
10
|
|
|
amin, |
11
|
|
|
median, |
12
|
|
|
amax, |
13
|
|
|
mean, |
14
|
|
|
std |
15
|
|
|
) |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
from NiaPy.algorithms import AlgorithmUtility |
19
|
|
|
|
20
|
|
|
logging.basicConfig() |
21
|
|
|
logger = logging.getLogger('NiaPy.runner.Runner') |
22
|
|
|
logger.setLevel('INFO') |
23
|
|
|
|
24
|
|
|
__all__ = ["Runner"] |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
class Runner: |
28
|
|
|
r"""Runner utility feature. |
29
|
|
|
|
30
|
|
|
Feature which enables running multiple algorithms with multiple benchmarks. |
31
|
|
|
It also support exporting results in various formats (e.g. LaTeX, Excel, JSON) |
32
|
|
|
|
33
|
|
|
Attributes: |
34
|
|
|
D (int): Dimension of problem |
35
|
|
|
NP (int): Population size |
36
|
|
|
nFES (int): Number of function evaluations |
37
|
|
|
nRuns (int): Number of repetitions |
38
|
|
|
useAlgorithms (list of Algorithm): List of algorithms to run |
39
|
|
|
useBenchmarks (list of Benchmarks): List of benchmarks to run |
40
|
|
|
|
41
|
|
|
Returns: |
42
|
|
|
results (Dict[str, Dict]): Returns the results. |
43
|
|
|
|
44
|
|
|
""" |
45
|
|
|
|
46
|
|
|
def __init__(self, D=10, nFES=1000000, nGEN=100000, nRuns=1, useAlgorithms='ArtificialBeeColonyAlgorithm', useBenchmarks='Ackley', **kwargs): |
47
|
|
|
r"""Initialize Runner. |
48
|
|
|
|
49
|
|
|
**__init__(self, D, NP, nFES, nRuns, useAlgorithms, useBenchmarks, ...)** |
50
|
|
|
|
51
|
|
|
Arguments: |
52
|
|
|
D (int): Dimension of problem |
53
|
|
|
nFES (int): Number of function evaluations |
54
|
|
|
nGEN (int): Number of generations |
55
|
|
|
nRuns (int): Number of repetitions |
56
|
|
|
useAlgorithms (list of Algorithm): List of algorithms to run |
57
|
|
|
useBenchmarks (list of Benchmarks): List of benchmarks to run |
58
|
|
|
|
59
|
|
|
""" |
60
|
|
|
|
61
|
|
|
self.D = D |
62
|
|
|
self.nFES = nFES |
63
|
|
|
self.nRuns = nRuns |
64
|
|
|
self.useAlgorithms = useAlgorithms |
65
|
|
|
self.useBenchmarks = useBenchmarks |
66
|
|
|
self.results = {} |
67
|
|
|
|
68
|
|
|
def benchmark_factory(self, name): |
69
|
|
|
r"""Create optimization task. |
70
|
|
|
|
71
|
|
|
Args: |
72
|
|
|
name (str): Benchmark name. |
73
|
|
|
|
74
|
|
|
Returns: |
75
|
|
|
Task: Optimization task to use. |
76
|
|
|
|
77
|
|
|
""" |
78
|
|
|
|
79
|
|
|
from NiaPy.task import StoppingTask, OptimizationType |
80
|
|
|
return StoppingTask(D=self.D, nFES=self.nFES, optType=OptimizationType.MINIMIZATION, benchmark=name) |
81
|
|
|
|
82
|
|
|
@classmethod |
83
|
|
|
def __create_export_dir(cls): |
84
|
|
|
r"""Create export directory if not already createed.""" |
85
|
|
|
if not os.path.exists("export"): |
86
|
|
|
os.makedirs("export") |
87
|
|
|
|
88
|
|
|
@classmethod |
89
|
|
|
def __generate_export_name(cls, extension): |
90
|
|
|
r"""Generate export file name. |
91
|
|
|
|
92
|
|
|
Args: |
93
|
|
|
extension (str): File format. |
94
|
|
|
|
95
|
|
|
Returns: |
96
|
|
|
|
97
|
|
|
""" |
98
|
|
|
|
99
|
|
|
return "export/" + str(datetime.datetime.now()).replace(":", ".") + "." + extension |
100
|
|
|
|
101
|
|
|
def __export_to_log(self): |
102
|
|
|
r"""Print the results to terminal.""" |
103
|
|
|
|
104
|
|
|
print(self.results) |
105
|
|
|
|
106
|
|
|
def __export_to_json(self): |
107
|
|
|
r"""Export the results in the JSON form. |
108
|
|
|
|
109
|
|
|
See Also: |
110
|
|
|
* :func:`NiaPy.Runner.__createExportDir` |
111
|
|
|
|
112
|
|
|
""" |
113
|
|
|
|
114
|
|
|
self.__create_export_dir() |
115
|
|
|
with open(self.__generate_export_name("json"), "w") as outFile: |
116
|
|
|
json.dump(self.results, outFile) |
117
|
|
|
logger.info("Export to JSON completed!") |
118
|
|
|
|
119
|
|
|
def __export_to_xlsx(self): |
120
|
|
|
r"""Export the results in the xlsx form. |
121
|
|
|
|
122
|
|
|
See Also: |
123
|
|
|
:func:`NiaPy.Runner.__generateExportName` |
124
|
|
|
|
125
|
|
|
""" |
126
|
|
|
|
127
|
|
|
self.__create_export_dir() |
128
|
|
|
workbook = xlsxwriter.Workbook(self.__generate_export_name("xlsx")) |
129
|
|
|
worksheet = workbook.add_worksheet() |
130
|
|
|
row, col, nRuns = 0, 0, 0 |
131
|
|
|
|
132
|
|
|
for alg in self.results: |
133
|
|
|
_, col = worksheet.write(row, col, alg), col + 1 |
134
|
|
|
for bench in self.results[alg]: |
135
|
|
|
worksheet.write(row, col, bench) |
136
|
|
|
nRuns = len(self.results[alg][bench]) |
137
|
|
|
for i in range(len(self.results[alg][bench])): |
138
|
|
|
_, row = worksheet.write(row, col, self.results[alg][bench][i]), row + 1 |
139
|
|
|
row, col = row - len(self.results[alg][bench]), col + 1 |
140
|
|
|
row, col = row + 1 + nRuns, col - 1 + len(self.results[alg]) |
141
|
|
|
|
142
|
|
|
workbook.close() |
143
|
|
|
logger.info("Export to XLSX completed!") |
144
|
|
|
|
145
|
|
|
def __export_to_latex(self): |
146
|
|
|
r"""Export the results in the form of latex table. |
147
|
|
|
|
148
|
|
|
See Also: |
149
|
|
|
:func:`NiaPy.Runner.__createExportDir` |
150
|
|
|
:func:`NiaPy.Runner.__generateExportName` |
151
|
|
|
|
152
|
|
|
""" |
153
|
|
|
|
154
|
|
|
self.__create_export_dir() |
155
|
|
|
|
156
|
|
|
metrics = ["Best", "Median", "Worst", "Mean", "Std."] |
157
|
|
|
|
158
|
|
|
def only_upper(s): |
159
|
|
|
return "".join(c for c in s if c.isupper()) |
160
|
|
|
|
161
|
|
|
with open(self.__generate_export_name("tex"), "a") as outFile: |
162
|
|
|
outFile.write("\\documentclass{article}\n") |
163
|
|
|
outFile.write("\\usepackage[utf8]{inputenc}\n") |
164
|
|
|
outFile.write("\\usepackage{siunitx}\n") |
165
|
|
|
outFile.write("\\sisetup{\n") |
166
|
|
|
outFile.write("round-mode=places,round-precision=3}\n") |
167
|
|
|
outFile.write("\\begin{document}\n") |
168
|
|
|
outFile.write("\\begin{table}[h]\n") |
169
|
|
|
outFile.write("\\centering\n") |
170
|
|
|
begin_tabular = "\\begin{tabular}{cc" |
171
|
|
|
for alg in self.results: |
172
|
|
|
for _i in range(len(self.results[alg])): |
173
|
|
|
begin_tabular += "S" |
174
|
|
|
firstLine = " &" |
175
|
|
|
for benchmark in self.results[alg].keys(): |
176
|
|
|
firstLine += " & \\multicolumn{1}{c}{\\textbf{" + benchmark + "}}" |
177
|
|
|
firstLine += " \\\\" |
178
|
|
|
break |
179
|
|
|
begin_tabular += "}\n" |
180
|
|
|
outFile.write(begin_tabular) |
181
|
|
|
outFile.write("\\hline\n") |
182
|
|
|
outFile.write(firstLine + "\n") |
|
|
|
|
183
|
|
|
outFile.write("\\hline\n") |
184
|
|
|
for alg in self.results: |
185
|
|
|
for metric in metrics: |
186
|
|
|
line = "" |
187
|
|
|
if metric != "Worst": |
188
|
|
|
line += " & " + metric |
189
|
|
|
else: |
190
|
|
|
shortAlg = "" |
191
|
|
|
if alg.endswith("Algorithm"): |
192
|
|
|
shortAlg = only_upper(alg[:-9]) |
193
|
|
|
else: |
194
|
|
|
shortAlg = only_upper(alg) |
195
|
|
|
line += "\\textbf{" + shortAlg + "} & " + metric |
196
|
|
|
for benchmark in self.results[alg]: |
197
|
|
|
if metric == "Best": |
198
|
|
|
line += " & " + str(amin(self.results[alg][benchmark])) |
199
|
|
|
elif metric == "Median": |
200
|
|
|
line += " & " + str(median(self.results[alg][benchmark])) |
201
|
|
|
elif metric == "Worst": |
202
|
|
|
line += " & " + str(amax(self.results[alg][benchmark])) |
203
|
|
|
elif metric == "Mean": |
204
|
|
|
line += " & " + str(mean(self.results[alg][benchmark])) |
205
|
|
|
else: |
206
|
|
|
line += " & " + str(std(self.results[alg][benchmark])) |
207
|
|
|
line += " \\\\" |
208
|
|
|
outFile.write(line + "\n") |
209
|
|
|
outFile.write("\\hline\n") |
210
|
|
|
outFile.write("\\end{tabular}\n") |
211
|
|
|
outFile.write("\\end{table}\n") |
212
|
|
|
outFile.write("\\end{document}") |
213
|
|
|
logger.info("Export to Latex completed!") |
214
|
|
|
|
215
|
|
|
def run(self, export="log", verbose=False): |
216
|
|
|
"""Execute runner. |
217
|
|
|
|
218
|
|
|
Arguments: |
219
|
|
|
export (str): Takes export type (e.g. log, json, xlsx, latex) (default: "log") |
220
|
|
|
verbose (bool: Switch for verbose logging (default: {False}) |
221
|
|
|
|
222
|
|
|
Raises: |
223
|
|
|
TypeError: Raises TypeError if export type is not supported |
224
|
|
|
|
225
|
|
|
Returns: |
226
|
|
|
dict: Returns dictionary of results |
227
|
|
|
|
228
|
|
|
See Also: |
229
|
|
|
* :func:`NiaPy.Runner.useAlgorithms` |
230
|
|
|
* :func:`NiaPy.Runner.useBenchmarks` |
231
|
|
|
* :func:`NiaPy.Runner.__algorithmFactory` |
232
|
|
|
|
233
|
|
|
""" |
234
|
|
|
|
235
|
|
|
for alg in self.useAlgorithms: |
236
|
|
|
if not isinstance(alg, "".__class__): |
237
|
|
|
alg_name = str(type(alg).__name__) |
238
|
|
|
else: |
239
|
|
|
alg_name = alg |
240
|
|
|
|
241
|
|
|
self.results[alg_name] = {} |
242
|
|
|
|
243
|
|
|
if verbose: |
244
|
|
|
logger.info("Running %s...", alg_name) |
245
|
|
|
|
246
|
|
|
for bench in self.useBenchmarks: |
247
|
|
|
if not isinstance(bench, "".__class__): |
248
|
|
|
bench_name = str(type(bench).__name__) |
249
|
|
|
else: |
250
|
|
|
bench_name = bench |
251
|
|
|
|
252
|
|
|
if verbose: |
253
|
|
|
logger.info("Running %s algorithm on %s benchmark...", alg_name, bench_name) |
254
|
|
|
|
255
|
|
|
benchmark_stopping_task = self.benchmark_factory(bench) |
256
|
|
|
self.results[alg_name][bench_name] = [] |
257
|
|
|
for _ in range(self.nRuns): |
258
|
|
|
algorithm = AlgorithmUtility().get_algorithm(alg) |
259
|
|
|
self.results[alg_name][bench_name].append(algorithm.run(benchmark_stopping_task)) |
260
|
|
|
if verbose: |
261
|
|
|
logger.info("---------------------------------------------------") |
262
|
|
|
if export == "log": |
263
|
|
|
self.__export_to_log() |
264
|
|
|
elif export == "json": |
265
|
|
|
self.__export_to_json() |
266
|
|
|
elif export == "xlsx": |
267
|
|
|
self.__export_to_xlsx() |
268
|
|
|
elif export == "latex": |
269
|
|
|
self.__export_to_latex() |
270
|
|
|
else: |
271
|
|
|
raise TypeError("Passed export type is not supported!") |
272
|
|
|
|