Passed
Pull Request — master (#202)
by
unknown
02:40 queued 49s
created

SineCosineAlgorithm.algorithmInfo()   A

Complexity

Conditions 1

Size

Total Lines 11
Code Lines 3

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 3
nop 0
dl 0
loc 11
rs 10
c 0
b 0
f 0
1
# encoding=utf8
2
# pylint: disable=mixed-indentation, trailing-whitespace, line-too-long, multiple-statements, attribute-defined-outside-init, logging-not-lazy, no-self-use, arguments-differ, bad-continuation
3
import logging
4
5
from numpy import apply_along_axis, pi, fabs, sin, cos
6
7
from NiaPy.algorithms.algorithm import Algorithm
8
9
logging.basicConfig()
10
logger = logging.getLogger('NiaPy.algorithms.basic.SineCosineAlgorithm')
11
logger.setLevel('INFO')
12
13
__all__ = ['SineCosineAlgorithm']
14
15
# FIXME test if algorithm realy works OK
16
17
class SineCosineAlgorithm(Algorithm):
18
	r"""Implementation of sine cosine algorithm.
19
20
	Algorithm:
21
		Sine Cosine Algorithm
22
23
	Date:
24
		2018
25
26
	Authors:
27
		Klemen Berkovič
28
29
	License:
30
		MIT
31
32
	Reference URL:
33
		https://www.sciencedirect.com/science/article/pii/S0950705115005043
34
35
	Reference paper:
36
		Seyedali Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowledge-Based Systems, Volume 96, 2016, Pages 120-133, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2015.12.022.
37
38
	Attributes:
39
		Name (List[str]): List of string representing algorithm names.
40
		a (float): Parameter for control in :math:`r_1` value
41
		Rmin (float): Minimu value for :math:`r_3` value
42
		Rmax (float): Maximum value for :math:`r_3` value
43
44
	See Also:
45
		* :class:`NiaPy.algorithms.Algorithm`
46
	"""
47
	Name = ['SineCosineAlgorithm', 'SCA']
48
49
	@staticmethod
50
	def algorithmInfo():
51
		r"""Get basic information of algorithm.
52
53
		Returns:
54
			str: Basic information of algorithm.
55
56
		See Also:
57
			* :func:`NiaPy.algorithms.Algorithm.algorithmInfo`
58
		"""
59
		return r"""Seyedali Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowledge-Based Systems, Volume 96, 2016, Pages 120-133, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2015.12.022."""
60
61
	@staticmethod
62
	def typeParameters():
63
		r"""Get dictionary with functions for checking values of parameters.
64
65
		Returns:
66
			Dict[str, Callable]:
67
				* a (Callable[[Union[float, int]], bool]): TODO
68
				* Rmin (Callable[[Union[float, int]], bool]): TODO
69
				* Rmax (Callable[[Union[float, int]], bool]): TODO
70
71
		See Also:
72
			* :func:`NiaPy.algorithms.Algorithm.typeParameters`
73
		"""
74
		d = Algorithm.typeParameters()
75
		d.update({
76
			'a': lambda x: isinstance(x, (float, int)) and x > 0,
77
			'Rmin': lambda x: isinstance(x, (float, int)),
78
			'Rmax': lambda x: isinstance(x, (float, int))
79
		})
80
		return d
81
82
	def setParameters(self, NP=25, a=3, Rmin=0, Rmax=2, **ukwargs):
83
		r"""Set the arguments of an algorithm.
84
85
		Args:
86
			NP (Optional[int]): Number of individual in population
87
			a (Optional[float]): Parameter for control in :math:`r_1` value
88
			Rmin (Optional[float]): Minimu value for :math:`r_3` value
89
			Rmax (Optional[float]): Maximum value for :math:`r_3` value
90
91
		See Also:
92
			* :func:`NiaPy.algorithms.algorithm.Algorithm.setParameters`
93
		"""
94
		Algorithm.setParameters(self, NP=NP, **ukwargs)
95
		self.a, self.Rmin, self.Rmax = a, Rmin, Rmax
96
		if ukwargs: logger.info('Unused arguments: %s' % (ukwargs))
97
98
	def nextPos(self, x, x_b, r1, r2, r3, r4, task):
99
		r"""Move individual to new position in search space.
100
101
		Args:
102
			x (numpy.ndarray): Individual represented with components.
103
			x_b (nmppy.ndarray): Best individual represented with components.
104
			r1 (float): Number dependent on algorithm iteration/generations.
105
			r2 (float): Random number in range of 0 and 2 * PI.
106
			r3 (float): Random number in range [Rmin, Rmax].
107
			r4 (float): Random number in range [0, 1].
108
			task (Task): Optimization task.
109
110
		Returns:
111
			numpy.ndarray: New individual that is moved based on individual ``x``.
112
		"""
113
		return task.repair(x + r1 * (sin(r2) if r4 < 0.5 else cos(r2)) * fabs(r3 * x_b - x), self.Rand)
114
115
	def initPopulation(self, task):
116
		r"""Initialize the individuals.
117
118
		Args:
119
			task (Task): Optimization task
120
121
		Returns:
122
			Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]:
123
				1. Initialized population of individuals
124
				2. Function/fitness values for individuals
125
				3. Additional arguments
126
		"""
127
		return Algorithm.initPopulation(self, task)
128
129
	def runIteration(self, task, P, P_f, xb, fxb, **dparams):
130
		r"""Core function of Sine Cosine Algorithm.
131
132
		Args:
133
			task (Task): Optimization task.
134
			P (numpy.ndarray): Current population individuals.
135
			P_f (numpy.ndarray[float]): Current population individulas function/fitness values.
136
			xb (numpy.ndarray): Current best solution to optimization task.
137
			fxb (float): Current best function/fitness value.
138
			dparams (Dict[str, Any]): Additional parameters.
139
140
		Returns:
141
			Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]:
142
				1. New population.
143
				2. New populations fitness/function values.
144
				3. Additional arguments.
145
		"""
146
		r1, r2, r3, r4 = self.a - task.Iters * (self.a / task.Iters), self.uniform(0, 2 * pi), self.uniform(self.Rmin, self.Rmax), self.rand()
147
		P = apply_along_axis(self.nextPos, 1, P, xb, r1, r2, r3, r4, task)
148
		P_f = apply_along_axis(task.eval, 1, P)
149
		return P, P_f, {}
150
151
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
152