1
|
|
|
# encoding=utf8 |
2
|
|
|
import logging |
3
|
|
|
|
4
|
|
|
import numpy as np |
5
|
|
|
|
6
|
|
|
from NiaPy.algorithms.algorithm import Algorithm |
7
|
|
|
|
8
|
|
|
logging.basicConfig() |
9
|
|
|
logger = logging.getLogger('NiaPy.algorithms.other') |
10
|
|
|
logger.setLevel('INFO') |
11
|
|
|
|
12
|
|
|
__all__ = ['RandomSearch'] |
13
|
|
|
|
14
|
|
|
class RandomSearch(Algorithm): |
15
|
|
|
r"""Implementation of a simple Random Algorithm. |
16
|
|
|
|
17
|
|
|
Algorithm: |
18
|
|
|
Random Search |
19
|
|
|
|
20
|
|
|
Date: |
21
|
|
|
11.10.2020 |
22
|
|
|
|
23
|
|
|
Authors: |
24
|
|
|
Iztok Fister Jr., Grega Vrbančič |
25
|
|
|
|
26
|
|
|
License: |
27
|
|
|
MIT |
28
|
|
|
|
29
|
|
|
Reference URL: https://en.wikipedia.org/wiki/Random_search |
30
|
|
|
|
31
|
|
|
Attributes: |
32
|
|
|
Name (List[str]): List of strings representing algorithm name. |
33
|
|
|
|
34
|
|
|
See Also: |
35
|
|
|
* :class:`NiaPy.algorithms.Algorithm` |
36
|
|
|
""" |
37
|
|
|
Name = ['RandomSearch', 'RS'] |
38
|
|
|
|
39
|
|
|
@staticmethod |
40
|
|
|
def algorithmInfo(): |
41
|
|
|
r"""Get basic information of algorithm. |
42
|
|
|
|
43
|
|
|
Returns: |
44
|
|
|
str: Basic information of algorithm. |
45
|
|
|
|
46
|
|
|
See Also: |
47
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
48
|
|
|
""" |
49
|
|
|
return r"""None""" |
50
|
|
|
|
51
|
|
|
def setParameters(self): |
52
|
|
|
r"""Set the algorithm parameters/arguments. |
53
|
|
|
|
54
|
|
|
Arguments: |
55
|
|
|
See Also |
56
|
|
|
* :func:`NiaPy.algorithms.Algorithm.setParameters` |
57
|
|
|
""" |
58
|
|
|
|
59
|
|
|
Algorithm.setParameters(self, NP=1) |
60
|
|
|
|
61
|
|
|
def getParameters(self): |
62
|
|
|
r"""Get algorithms parametes values. |
63
|
|
|
|
64
|
|
|
Returns: |
65
|
|
|
Dict[str, Any]: |
66
|
|
|
See Also |
67
|
|
|
* :func:`NiaPy.algorithms.Algorithm.getParameters` |
68
|
|
|
""" |
69
|
|
|
d = Algorithm.getParameters(self) |
70
|
|
|
return d |
71
|
|
|
|
72
|
|
|
def initPopulation(self, task): |
73
|
|
|
r"""Initialize the starting population. |
74
|
|
|
|
75
|
|
|
Args: |
76
|
|
|
task (Task): Optimization task. |
77
|
|
|
Returns: |
78
|
|
|
Tuple[numpy.ndarray, float, dict]: |
79
|
|
|
1. Initial solution |
80
|
|
|
2. Initial solutions fitness/objective value |
81
|
|
|
3. Additional arguments |
82
|
|
|
""" |
83
|
|
|
total_candidates = 0 |
84
|
|
|
if task.nGEN or task.nFES: |
85
|
|
|
total_candidates = task.nGEN if task.nGEN else task.nFES |
86
|
|
|
self.candidates = [] |
87
|
|
|
for i in range(total_candidates): |
88
|
|
|
while True: |
89
|
|
|
x = task.Lower + task.bcRange() * self.rand(task.D) |
90
|
|
|
if not np.any([np.all(a == x) for a in self.candidates]): |
91
|
|
|
self.candidates.append(x) |
92
|
|
|
break |
93
|
|
|
|
94
|
|
|
xfit = task.eval(self.candidates[0]) |
95
|
|
|
return x, xfit, {} |
|
|
|
|
96
|
|
|
|
97
|
|
|
def runIteration(self, task, x, xfit, xb, fxb, **dparams): |
98
|
|
|
r"""Core function of the algorithm. |
99
|
|
|
|
100
|
|
|
Args: |
101
|
|
|
task (Task): |
102
|
|
|
x (numpy.ndarray): |
103
|
|
|
xfit (float): |
104
|
|
|
xb (numpy.ndarray): |
105
|
|
|
fxb (float): |
106
|
|
|
**dparams (dict): Additional arguments. |
107
|
|
|
|
108
|
|
|
Returns: |
109
|
|
|
Tuple[numpy.ndarray, float, numpy.ndarray, float, dict]: |
110
|
|
|
1. New solution |
111
|
|
|
2. New solutions fitness/objective value |
112
|
|
|
3. New global best solution |
113
|
|
|
4. New global best solutions fitness/objective value |
114
|
|
|
5. Additional arguments |
115
|
|
|
""" |
116
|
|
|
current_candidate = task.Evals if task.Evals else task.Iters |
117
|
|
|
x = self.candidates[current_candidate] |
118
|
|
|
xfit = task.eval(x) |
119
|
|
|
xb, fxb = self.getBest(x, xfit, xb, fxb) |
120
|
|
|
return x, xfit, xb, fxb, {} |
121
|
|
|
|