Conditions | 17 |
Total Lines | 73 |
Lines | 0 |
Ratio | 0 % |
Changes | 3 | ||
Bugs | 1 | Features | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like Runner.__exportToLatex() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | from __future__ import print_function # for backward compatibility purpose |
||
121 | def __exportToLatex(self): |
||
122 | metrics = ['Best', 'Median', 'Worst', 'Mean', 'Std.'] |
||
123 | |||
124 | def only_upper(s): |
||
125 | return "".join(c for c in s if c.isupper()) |
||
126 | |||
127 | with open(self.__generateExportName('tex'), 'a') as outFile: |
||
128 | outFile.write('\\documentclass{article}\n') |
||
129 | outFile.write('\\usepackage[utf8]{inputenc}\n') |
||
130 | outFile.write('\\usepackage{siunitx}\n') |
||
131 | outFile.write('\\sisetup{\n') |
||
132 | outFile.write('round-mode=places,round-precision=3}\n') |
||
133 | outFile.write('\\begin{document}\n') |
||
134 | outFile.write('\\begin{table}[h]\n') |
||
135 | outFile.write('\\centering\n') |
||
136 | |||
137 | begin_tabular = '\\begin{tabular}{cc' |
||
138 | |||
139 | for alg in self.results: |
||
140 | for _i in range(len(self.results[alg])): |
||
141 | begin_tabular += 'S' |
||
142 | |||
143 | firstLine = ' &' |
||
144 | |||
145 | for benchmark in self.results[alg].keys(): |
||
146 | firstLine += ' & \\multicolumn{1}{c}{\\textbf{' + \ |
||
147 | benchmark + '}}' |
||
148 | |||
149 | firstLine += ' \\\\' |
||
150 | |||
151 | break |
||
152 | |||
153 | begin_tabular += '}\n' |
||
154 | outFile.write(begin_tabular) |
||
155 | outFile.write('\\hline\n') |
||
156 | outFile.write(firstLine + '\n') |
||
157 | outFile.write('\\hline\n') |
||
158 | |||
159 | for alg in self.results: |
||
160 | for metric in metrics: |
||
161 | line = '' |
||
162 | |||
163 | if metric != 'Worst': |
||
164 | line += ' & ' + metric |
||
165 | else: |
||
166 | shortAlg = '' |
||
167 | if alg.endswith('Algorithm'): |
||
168 | shortAlg = only_upper(alg[:-9]) |
||
169 | else: |
||
170 | shortAlg = only_upper(alg) |
||
171 | line += '\\textbf{' + shortAlg + '} & ' + metric |
||
172 | |||
173 | for benchmark in self.results[alg]: |
||
174 | if metric == 'Best': |
||
175 | line += ' & ' + str(np.amin(self.results[alg][benchmark])) |
||
176 | elif metric == 'Median': |
||
177 | line += ' & ' + str(np.median(self.results[alg][benchmark])) |
||
178 | elif metric == 'Worst': |
||
179 | line += ' & ' + str(np.amax(self.results[alg][benchmark])) |
||
180 | elif metric == 'Mean': |
||
181 | line += ' & ' + str(np.mean(self.results[alg][benchmark])) |
||
182 | else: |
||
183 | line += ' & ' + str(np.std(self.results[alg][benchmark])) |
||
184 | |||
185 | line += ' \\\\' |
||
186 | outFile.write(line + '\n') |
||
187 | |||
188 | outFile.write('\\hline\n') |
||
189 | outFile.write('\\end{tabular}\n') |
||
190 | outFile.write('\\end{table}\n') |
||
191 | outFile.write('\\end{document}') |
||
192 | |||
193 | logger.info('Export to Latex completed!') |
||
194 | |||
233 |