|
1
|
|
|
# encoding=utf8 |
|
2
|
|
|
import logging |
|
3
|
|
|
|
|
4
|
|
|
from numpy import random as rand, concatenate, asarray, argsort |
|
5
|
|
|
|
|
6
|
|
|
from NiaPy.algorithms.basic.de import DifferentialEvolution |
|
7
|
|
|
|
|
8
|
|
|
logging.basicConfig() |
|
9
|
|
|
logger = logging.getLogger('NiaPy.algorithms.modified') |
|
10
|
|
|
logger.setLevel('INFO') |
|
11
|
|
|
|
|
12
|
|
|
__all__ = [ |
|
13
|
|
|
'AdaptiveArchiveDifferentialEvolution', |
|
14
|
|
|
'CrossRandCurr2Pbest' |
|
15
|
|
|
] |
|
16
|
|
|
|
|
17
|
|
|
def CrossRandCurr2Pbest(pop, ic, x_b, f, cr, p=0.2, arc=None, rnd=rand, *args): |
|
18
|
|
|
r"""Mutation strategy with crossover. |
|
19
|
|
|
|
|
20
|
|
|
Mutation strategy uses two different random individuals from population to perform mutation. |
|
21
|
|
|
|
|
22
|
|
|
Mutation: |
|
23
|
|
|
Name: DE/curr2pbest/1 |
|
24
|
|
|
|
|
25
|
|
|
Args: |
|
26
|
|
|
pop (numpy.ndarray): Current population. |
|
27
|
|
|
ic (int): Index of current individual. |
|
28
|
|
|
x_b (numpy.ndarray): Global best individual. |
|
29
|
|
|
f (float): Scale factor. |
|
30
|
|
|
cr (float): Crossover probability. |
|
31
|
|
|
p (float): Procentage of best individuals to use. |
|
32
|
|
|
arc (numpy.ndarray): Achived individuals. |
|
33
|
|
|
rnd (mtrand.RandomState): Random generator. |
|
34
|
|
|
*args (Dict[str, Any]): Additional argumets. |
|
35
|
|
|
|
|
36
|
|
|
Returns: |
|
37
|
|
|
numpy.ndarray: New position. |
|
38
|
|
|
""" |
|
39
|
|
|
# Get random index from current population |
|
40
|
|
|
pb = [1.0 / (len(pop) - 1) if i != ic else 0 for i in range(len(pop))] if len(pop) > 1 else None |
|
41
|
|
|
r = rnd.choice(len(pop), 1, replace=not len(pop) >= 3, p=pb) |
|
42
|
|
|
# Get pbest index |
|
43
|
|
|
index, pi = argsort(pop), int(len(pop) * p) |
|
44
|
|
|
ppop = pop[index[:pi]] |
|
45
|
|
|
pb = [1.0 / len(ppop) for i in range(pi)] if len(ppop) > 1 else None |
|
46
|
|
|
rp = rnd.choice(pi, 1, replace=not len(ppop) >= 1, p=pb) |
|
47
|
|
|
# Get union population and archive index |
|
48
|
|
|
apop = concatenate((pop, arc)) if arc is not None else pop |
|
49
|
|
|
pb = [1.0 / (len(apop) - 1) if i != ic else 0 for i in range(len(apop))] if len(apop) > 1 else None |
|
50
|
|
|
ra = rnd.choice(len(apop), 1, replace=not len(apop) >= 1, p=pb) |
|
51
|
|
|
# Generate new positoin |
|
52
|
|
|
j = rnd.randint(len(pop[ic])) |
|
53
|
|
|
x = [pop[ic][i] + f * (ppop[rp[0]][i] - pop[ic][i]) + f * (pop[r[0]][i] - apop[ra[0]][i]) if rnd.rand() < cr or i == j else pop[ic][i] for i in range(len(pop[ic]))] |
|
54
|
|
|
return asarray(x) |
|
55
|
|
|
|
|
56
|
|
View Code Duplication |
class AdaptiveArchiveDifferentialEvolution(DifferentialEvolution): |
|
|
|
|
|
|
57
|
|
|
r"""Implementation of Adaptive Differential Evolution With Optional External Archive algorithm. |
|
58
|
|
|
|
|
59
|
|
|
Algorithm: |
|
60
|
|
|
Adaptive Differential Evolution With Optional External Archive |
|
61
|
|
|
|
|
62
|
|
|
Date: |
|
63
|
|
|
2019 |
|
64
|
|
|
|
|
65
|
|
|
Author: |
|
66
|
|
|
Klemen Berkovič |
|
67
|
|
|
|
|
68
|
|
|
License: |
|
69
|
|
|
MIT |
|
70
|
|
|
|
|
71
|
|
|
Reference URL: |
|
72
|
|
|
https://ieeexplore.ieee.org/document/5208221 |
|
73
|
|
|
|
|
74
|
|
|
Reference paper: |
|
75
|
|
|
Zhang, Jingqiao, and Arthur C. Sanderson. "JADE: adaptive differential evolution with optional external archive." IEEE Transactions on evolutionary computation 13.5 (2009): 945-958. |
|
76
|
|
|
|
|
77
|
|
|
Attributes: |
|
78
|
|
|
Name (List[str]): List of strings representing algorithm name. |
|
79
|
|
|
|
|
80
|
|
|
See Also: |
|
81
|
|
|
:class:`NiaPy.algorithms.basic.DifferentialEvolution` |
|
82
|
|
|
""" |
|
83
|
|
|
Name = ['AdaptiveArchiveDifferentialEvolution', 'JADE'] |
|
84
|
|
|
|
|
85
|
|
|
@staticmethod |
|
86
|
|
|
def algorithmInfo(): |
|
87
|
|
|
r"""Get algorithm information. |
|
88
|
|
|
|
|
89
|
|
|
Returns: |
|
90
|
|
|
str: Alogrithm information. |
|
91
|
|
|
|
|
92
|
|
|
See Also: |
|
93
|
|
|
:func:`NiaPy.algorithms.algorithm.Algorithm.algorithmInfo` |
|
94
|
|
|
""" |
|
95
|
|
|
return r"""Zhang, Jingqiao, and Arthur C. Sanderson. "JADE: adaptive differential evolution with optional external archive." IEEE Transactions on evolutionary computation 13.5 (2009): 945-958.""" |
|
96
|
|
|
|
|
97
|
|
|
def setParameters(self, **kwargs): |
|
98
|
|
|
DifferentialEvolution.setParameters(self, **kwargs) |
|
99
|
|
|
# TODO add parameters of the algorithm |
|
100
|
|
|
|
|
101
|
|
|
def getParameters(self): |
|
102
|
|
|
d = DifferentialEvolution.getParameters(self) |
|
103
|
|
|
# TODO add paramters values |
|
104
|
|
|
return d |
|
105
|
|
|
|
|
106
|
|
|
def runIteration(self, task, pop, fpop, xb, fxb, **dparams): |
|
107
|
|
|
# TODO Implement algorithm |
|
108
|
|
|
return pop, fpop, xb, fxb, dparams |
|
109
|
|
|
|
|
110
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
|
111
|
|
|
|