|
1
|
|
|
# encoding=utf8 |
|
2
|
|
|
import logging |
|
3
|
|
|
|
|
4
|
|
|
import numpy as np |
|
5
|
|
|
|
|
6
|
|
|
from NiaPy.algorithms.algorithm import Algorithm |
|
7
|
|
|
|
|
8
|
|
|
logging.basicConfig() |
|
9
|
|
|
logger = logging.getLogger('NiaPy.algorithms.modified') |
|
10
|
|
|
logger.setLevel('INFO') |
|
11
|
|
|
|
|
12
|
|
|
__all__ = ['AdaptiveBatAlgorithm', 'SelfAdaptiveBatAlgorithm'] |
|
13
|
|
|
|
|
14
|
|
|
class AdaptiveBatAlgorithm(Algorithm): |
|
15
|
|
|
r"""Implementation of Adaptive bat algorithm. |
|
16
|
|
|
|
|
17
|
|
|
Algorithm: |
|
18
|
|
|
Adaptive bat algorithm |
|
19
|
|
|
|
|
20
|
|
|
Date: |
|
21
|
|
|
April 2019 |
|
22
|
|
|
|
|
23
|
|
|
Authors: |
|
24
|
|
|
Klemen Berkovič |
|
25
|
|
|
|
|
26
|
|
|
License: |
|
27
|
|
|
MIT |
|
28
|
|
|
|
|
29
|
|
|
Attributes: |
|
30
|
|
|
Name (List[str]): List of strings representing algorithm name. |
|
31
|
|
|
epsilon (float): Scaling factor. |
|
32
|
|
|
alpha (float): Constant for updating loudness. |
|
33
|
|
|
r (float): Pulse rate. |
|
34
|
|
|
Qmin (float): Minimum frequency. |
|
35
|
|
|
Qmax (float): Maximum frequency. |
|
36
|
|
|
|
|
37
|
|
|
See Also: |
|
38
|
|
|
* :class:`NiaPy.algorithms.Algorithm` |
|
39
|
|
|
""" |
|
40
|
|
|
Name = ['AdaptiveBatAlgorithm', 'ABA'] |
|
41
|
|
|
|
|
42
|
|
|
@staticmethod |
|
43
|
|
|
def typeParameters(): |
|
44
|
|
|
r"""Return dict with where key of dict represents parameter name and values represent checking functions for selected parameter. |
|
45
|
|
|
|
|
46
|
|
|
Returns: |
|
47
|
|
|
Dict[str, Callable]: |
|
48
|
|
|
* epsilon (Callable[[Union[float, int]], bool]): Scale factor. |
|
49
|
|
|
* alpha (Callable[[Union[float, int]], bool]): Constant for updating loudness. |
|
50
|
|
|
* r (Callable[[Union[float, int]], bool]): Pulse rate. |
|
51
|
|
|
* Qmin (Callable[[Union[float, int]], bool]): Minimum frequency. |
|
52
|
|
|
* Qmax (Callable[[Union[float, int]], bool]): Maximum frequency. |
|
53
|
|
|
|
|
54
|
|
|
See Also: |
|
55
|
|
|
* :func:`NiaPy.algorithms.Algorithm.typeParameters` |
|
56
|
|
|
""" |
|
57
|
|
|
d = Algorithm.typeParameters() |
|
58
|
|
|
d.update({ |
|
59
|
|
|
'epsilon': lambda x: isinstance(x, (float, int)) and x > 0, |
|
60
|
|
|
'alpha': lambda x: isinstance(x, (float, int)) and x > 0, |
|
61
|
|
|
'r': lambda x: isinstance(x, (float, int)) and x > 0, |
|
62
|
|
|
'Qmin': lambda x: isinstance(x, (float, int)), |
|
63
|
|
|
'Qmax': lambda x: isinstance(x, (float, int)) |
|
64
|
|
|
}) |
|
65
|
|
|
return d |
|
66
|
|
|
|
|
67
|
|
|
def setParameters(self, NP=100, A=0.5, epsilon=0.001, alpha=1.0, r=0.5, Qmin=0.0, Qmax=2.0, **ukwargs): |
|
68
|
|
|
r"""Set the parameters of the algorithm. |
|
69
|
|
|
|
|
70
|
|
|
Args: |
|
71
|
|
|
A (Optional[float]): Starting loudness. |
|
72
|
|
|
epsilon (Optional[float]): Scaling factor. |
|
73
|
|
|
alpha (Optional[float]): Constant for updating loudness. |
|
74
|
|
|
r (Optional[float]): Pulse rate. |
|
75
|
|
|
Qmin (Optional[float]): Minimum frequency. |
|
76
|
|
|
Qmax (Optional[float]): Maximum frequency. |
|
77
|
|
|
|
|
78
|
|
|
See Also: |
|
79
|
|
|
* :func:`NiaPy.algorithms.Algorithm.setParameters` |
|
80
|
|
|
""" |
|
81
|
|
|
Algorithm.setParameters(self, NP=NP, **ukwargs) |
|
82
|
|
|
self.A, self.epsilon, self.alpha, self.r, self.Qmin, self.Qmax = A, epsilon, alpha, r, Qmin, Qmax |
|
83
|
|
|
|
|
84
|
|
|
def getParameters(self): |
|
85
|
|
|
r"""Get algorithm parameters. |
|
86
|
|
|
|
|
87
|
|
|
Returns: |
|
88
|
|
|
Dict[str, Any]: Arguments values. |
|
89
|
|
|
|
|
90
|
|
|
See Also: |
|
91
|
|
|
* :func:`NiaPy.algorithms.algorithm.Algorithm.getParameters` |
|
92
|
|
|
""" |
|
93
|
|
|
d = Algorithm.getParameters(self) |
|
94
|
|
|
d.update({ |
|
95
|
|
|
'A': self.A, |
|
96
|
|
|
'epsilon': self.epsilon, |
|
97
|
|
|
'alpha': self.alpha, |
|
98
|
|
|
'r': self.r, |
|
99
|
|
|
'Qmin': self.Qmin, |
|
100
|
|
|
'Qmax': self.Qmax |
|
101
|
|
|
}) |
|
102
|
|
|
return d |
|
103
|
|
|
|
|
104
|
|
View Code Duplication |
def initPopulation(self, task): |
|
|
|
|
|
|
105
|
|
|
r"""Initialize the starting population. |
|
106
|
|
|
|
|
107
|
|
|
Parameters: |
|
108
|
|
|
task (Task): Optimization task |
|
109
|
|
|
|
|
110
|
|
|
Returns: |
|
111
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
|
112
|
|
|
1. New population. |
|
113
|
|
|
2. New population fitness/function values. |
|
114
|
|
|
3. Additional arguments: |
|
115
|
|
|
* A (float): Loudness. |
|
116
|
|
|
* S (numpy.ndarray): TODO |
|
117
|
|
|
* Q (numpy.ndarray[float]): TODO |
|
118
|
|
|
* v (numpy.ndarray[float]): TODO |
|
119
|
|
|
|
|
120
|
|
|
See Also: |
|
121
|
|
|
* :func:`NiaPy.algorithms.Algorithm.initPopulation` |
|
122
|
|
|
""" |
|
123
|
|
|
Sol, Fitness, d = Algorithm.initPopulation(self, task) |
|
124
|
|
|
A, S, Q, v = np.full(self.NP, self.A), np.full([self.NP, task.D], 0.0), np.full(self.NP, 0.0), np.full([self.NP, task.D], 0.0) |
|
125
|
|
|
d.update({'A': A, 'S': S, 'Q': Q, 'v': v}) |
|
126
|
|
|
return Sol, Fitness, d |
|
127
|
|
|
|
|
128
|
|
|
def localSearch(self, best, A, task, **kwargs): |
|
129
|
|
|
r"""Improve the best solution according to the Yang (2010). |
|
130
|
|
|
|
|
131
|
|
|
Args: |
|
132
|
|
|
best (numpy.ndarray): Global best individual. |
|
133
|
|
|
A (float): Loudness. |
|
134
|
|
|
task (Task): Optimization task. |
|
135
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
|
136
|
|
|
|
|
137
|
|
|
Returns: |
|
138
|
|
|
numpy.ndarray: New solution based on global best individual. |
|
139
|
|
|
""" |
|
140
|
|
|
return task.repair(best + self.epsilon * A * self.normal(0, 1, task.D), rnd=self.Rand) |
|
141
|
|
|
|
|
142
|
|
|
def updateLoudness(self, A): |
|
143
|
|
|
r"""Update loudness when the prey is found. |
|
144
|
|
|
|
|
145
|
|
|
Args: |
|
146
|
|
|
A (float): Loudness. |
|
147
|
|
|
|
|
148
|
|
|
Returns: |
|
149
|
|
|
float: New loudness. |
|
150
|
|
|
""" |
|
151
|
|
|
nA = A * self.alpha |
|
152
|
|
|
return nA if nA > 1e-13 else self.A |
|
153
|
|
|
|
|
154
|
|
|
def runIteration(self, task, Sol, Fitness, xb, fxb, A, S, Q, v, **dparams): |
|
155
|
|
|
r"""Core function of Bat Algorithm. |
|
156
|
|
|
|
|
157
|
|
|
Parameters: |
|
158
|
|
|
task (Task): Optimization task. |
|
159
|
|
|
Sol (numpy.ndarray): Current population |
|
160
|
|
|
Fitness (numpy.ndarray[float]): Current population fitness/funciton values |
|
161
|
|
|
best (numpy.ndarray): Current best individual |
|
162
|
|
|
f_min (float): Current best individual function/fitness value |
|
163
|
|
|
S (numpy.ndarray): TODO |
|
164
|
|
|
Q (numpy.ndarray[float]): TODO |
|
165
|
|
|
v (numpy.ndarray[float]): TODO |
|
166
|
|
|
dparams (Dict[str, Any]): Additional algorithm arguments |
|
167
|
|
|
|
|
168
|
|
|
Returns: |
|
169
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
|
170
|
|
|
1. New population |
|
171
|
|
|
2. New population fitness/function vlues |
|
172
|
|
|
3. Additional arguments: |
|
173
|
|
|
* A (numpy.ndarray[float]): Loudness. |
|
174
|
|
|
* S (numpy.ndarray): TODO |
|
175
|
|
|
* Q (numpy.ndarray[float]): TODO |
|
176
|
|
|
* v (numpy.ndarray[float]): TODO |
|
177
|
|
|
""" |
|
178
|
|
|
for i in range(self.NP): |
|
179
|
|
|
Q[i] = self.Qmin + (self.Qmax - self.Qmin) * self.uniform(0, 1) |
|
180
|
|
|
v[i] += (Sol[i] - xb) * Q[i] |
|
181
|
|
|
if self.rand() > self.r: S[i] = self.localSearch(best=xb, A=A[i], task=task, i=i, Sol=Sol) |
|
182
|
|
|
else: S[i] = task.repair(Sol[i] + v[i], rnd=self.Rand) |
|
183
|
|
|
Fnew = task.eval(S[i]) |
|
184
|
|
|
if (Fnew <= Fitness[i]) and (self.rand() < A[i]): Sol[i], Fitness[i] = S[i], Fnew |
|
185
|
|
|
if Fnew <= fxb: xb, fxb, A[i] = S[i].copy(), Fnew, self.updateLoudness(A[i]) |
|
186
|
|
|
return Sol, Fitness, xb, fxb, {'A': A, 'S': S, 'Q': Q, 'v': v} |
|
187
|
|
|
|
|
188
|
|
|
class SelfAdaptiveBatAlgorithm(AdaptiveBatAlgorithm): |
|
189
|
|
|
r"""Implementation of Hybrid bat algorithm. |
|
190
|
|
|
|
|
191
|
|
|
Algorithm: |
|
192
|
|
|
Hybrid bat algorithm |
|
193
|
|
|
|
|
194
|
|
|
Date: |
|
195
|
|
|
April 2019 |
|
196
|
|
|
|
|
197
|
|
|
Author: |
|
198
|
|
|
Klemen Berkovič |
|
199
|
|
|
|
|
200
|
|
|
License: |
|
201
|
|
|
MIT |
|
202
|
|
|
|
|
203
|
|
|
Reference paper: |
|
204
|
|
|
Fister Jr., Iztok and Fister, Dusan and Yang, Xin-She. "A Hybrid Bat Algorithm". Elektrotehniski vestnik, 2013. 1-7. |
|
205
|
|
|
|
|
206
|
|
|
Attributes: |
|
207
|
|
|
Name (List[str]): List of strings representing algorithm name. |
|
208
|
|
|
A_l (Optional[float]): Lower limit of loudness. |
|
209
|
|
|
A_u (Optional[float]): Upper limit of loudness. |
|
210
|
|
|
r_l (Optional[float]): Lower limit of pulse rate. |
|
211
|
|
|
r_u (Optional[float]): Upper limit of pulse rate. |
|
212
|
|
|
tao_1 (Optional[float]): Learning rate for loudness. |
|
213
|
|
|
tao_2 (Optional[float]): Learning rate for pulse rate. |
|
214
|
|
|
|
|
215
|
|
|
See Also: |
|
216
|
|
|
* :class:`NiaPy.algorithms.basic.BatAlgorithm` |
|
217
|
|
|
""" |
|
218
|
|
|
Name = ['SelfAdaptiveBatAlgorithm', 'SABA'] |
|
219
|
|
|
|
|
220
|
|
|
@staticmethod |
|
221
|
|
|
def algorithmInfo(): |
|
222
|
|
|
r"""Get basic information about the algorithm. |
|
223
|
|
|
|
|
224
|
|
|
Returns: |
|
225
|
|
|
str: Basic information. |
|
226
|
|
|
""" |
|
227
|
|
|
return r"""Fister Jr., Iztok and Fister, Dusan and Yang, Xin-She. "A Hybrid Bat Algorithm". Elektrotehniski vestnik, 2013. 1-7.""" |
|
228
|
|
|
|
|
229
|
|
View Code Duplication |
@staticmethod |
|
|
|
|
|
|
230
|
|
|
def typeParameters(): |
|
231
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
|
232
|
|
|
|
|
233
|
|
|
Returns: |
|
234
|
|
|
Dict[str, Callable]: TODO |
|
235
|
|
|
|
|
236
|
|
|
See Also: |
|
237
|
|
|
* :func:`NiaPy.algorithms.basic.BatAlgorithm.typeParameters` |
|
238
|
|
|
""" |
|
239
|
|
|
d = AdaptiveBatAlgorithm.typeParameters() |
|
240
|
|
|
d.pop('A', None), d.pop('r', None) |
|
241
|
|
|
d.update({ |
|
242
|
|
|
'A_l': lambda x: isinstance(x, (float, int)) and x >= 0, |
|
243
|
|
|
'A_u': lambda x: isinstance(x, (float, int)) and x >= 0, |
|
244
|
|
|
'r_l': lambda x: isinstance(x, (float, int)) and x >= 0, |
|
245
|
|
|
'r_u': lambda x: isinstance(x, (float, int)) and x >= 0, |
|
246
|
|
|
'tao_1': lambda x: isinstance(x, (float, int)) and 0 <= x <= 1, |
|
247
|
|
|
'tao_2': lambda x: isinstance(x, (float, int)) and 0 <= x <= 1 |
|
248
|
|
|
}) |
|
249
|
|
|
return d |
|
250
|
|
|
|
|
251
|
|
|
def setParameters(self, A_l=0.9, A_u=1.0, r_l=0.001, r_u=0.1, tao_1=0.1, tao_2=0.1, **ukwargs): |
|
252
|
|
|
r"""Set core parameters of HybridBatAlgorithm algorithm. |
|
253
|
|
|
|
|
254
|
|
|
Arguments: |
|
255
|
|
|
A_l (Optional[float]): Lower limit of loudness. |
|
256
|
|
|
A_u (Optional[float]): Upper limit of loudness. |
|
257
|
|
|
r_l (Optional[float]): Lower limit of pulse rate. |
|
258
|
|
|
r_u (Optional[float]): Upper limit of pulse rate. |
|
259
|
|
|
tao_1 (Optional[float]): Learning rate for loudness. |
|
260
|
|
|
tao_2 (Optional[float]): Learning rate for pulse rate. |
|
261
|
|
|
|
|
262
|
|
|
See Also: |
|
263
|
|
|
* :func:`NiaPy.algorithms.modified.AdaptiveBatAlgorithm.setParameters` |
|
264
|
|
|
""" |
|
265
|
|
|
AdaptiveBatAlgorithm.setParameters(self, **ukwargs) |
|
266
|
|
|
self.A_l, self.A_u, self.r_l, self.r_u, self.tao_1, self.tao_2 = A_l, A_u, r_l, r_u, tao_1, tao_2 |
|
267
|
|
|
|
|
268
|
|
|
def getParameters(self): |
|
269
|
|
|
r"""Get parameters of the algorithm. |
|
270
|
|
|
|
|
271
|
|
|
Returns: |
|
272
|
|
|
Dict[str, Any]: Parameters of the algorithm. |
|
273
|
|
|
|
|
274
|
|
|
See Also: |
|
275
|
|
|
* :func:`NiaPy.algorithms.modified.AdaptiveBatAlgorithm.getParameters` |
|
276
|
|
|
""" |
|
277
|
|
|
d = AdaptiveBatAlgorithm.getParameters(self) |
|
278
|
|
|
d.update({ |
|
279
|
|
|
'A_l': self.A_l, |
|
280
|
|
|
'A_u': self.A_u, |
|
281
|
|
|
'r_l': self.r_l, |
|
282
|
|
|
'r_u': self.r_u, |
|
283
|
|
|
'tao_1': self.tao_1, |
|
284
|
|
|
'tao_2': self.tao_2 |
|
285
|
|
|
}) |
|
286
|
|
|
return d |
|
287
|
|
|
|
|
288
|
|
|
def initPopulation(self, task): |
|
289
|
|
|
Sol, Fitness, d = AdaptiveBatAlgorithm.initPopulation(self, task) |
|
290
|
|
|
A, r = np.full(self.NP, self.A), np.full(self.NP, self.r) |
|
291
|
|
|
d.update({'A': A, 'r': r}) |
|
292
|
|
|
return Sol, Fitness, d |
|
293
|
|
|
|
|
294
|
|
|
def selfAdaptation(self, A, r): |
|
295
|
|
|
r"""Adaptation step. |
|
296
|
|
|
|
|
297
|
|
|
Args: |
|
298
|
|
|
A (float): Current loudness. |
|
299
|
|
|
r (float): Current pulse rate. |
|
300
|
|
|
|
|
301
|
|
|
Returns: |
|
302
|
|
|
Tuple[float, float]: |
|
303
|
|
|
1. New loudness. |
|
304
|
|
|
2. Nwq pulse rate. |
|
305
|
|
|
""" |
|
306
|
|
|
return self.A_l + self.rand() * (self.A_u - self.A_l) if self.rand() < self.tao_1 else A, self.r_l + self.rand() * (self.r_u - self.r_l) if self.rand() < self.tao_2 else r |
|
307
|
|
|
|
|
308
|
|
|
def runIteration(self, task, Sol, Fitness, xb, fxb, A, r, S, Q, v, **dparams): |
|
309
|
|
|
r"""Core function of Bat Algorithm. |
|
310
|
|
|
|
|
311
|
|
|
Parameters: |
|
312
|
|
|
task (Task): Optimization task. |
|
313
|
|
|
Sol (numpy.ndarray): Current population |
|
314
|
|
|
Fitness (numpy.ndarray[float]): Current population fitness/funciton values |
|
315
|
|
|
xb (numpy.ndarray): Current best individual |
|
316
|
|
|
fxb (float): Current best individual function/fitness value |
|
317
|
|
|
A (numpy.ndarray[flaot]): Loudness of individuals. |
|
318
|
|
|
r (numpy.ndarray[float[): Pulse rate of individuals. |
|
319
|
|
|
S (numpy.ndarray): TODO |
|
320
|
|
|
Q (numpy.ndarray[float]): TODO |
|
321
|
|
|
v (numpy.ndarray[float]): TODO |
|
322
|
|
|
dparams (Dict[str, Any]): Additional algorithm arguments |
|
323
|
|
|
|
|
324
|
|
|
Returns: |
|
325
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
|
326
|
|
|
1. New population |
|
327
|
|
|
2. New population fitness/function vlues |
|
328
|
|
|
3. Additional arguments: |
|
329
|
|
|
* A (numpy.ndarray[float]): Loudness. |
|
330
|
|
|
* r (numpy.ndarray[float]): Pulse rate. |
|
331
|
|
|
* S (numpy.ndarray): TODO |
|
332
|
|
|
* Q (numpy.ndarray[float]): TODO |
|
333
|
|
|
* v (numpy.ndarray[float]): TODO |
|
334
|
|
|
""" |
|
335
|
|
|
for i in range(self.NP): |
|
336
|
|
|
A[i], r[i] = self.selfAdaptation(A[i], r[i]) |
|
337
|
|
|
Q[i] = self.Qmin + (self.Qmax - self.Qmin) * self.uniform(0, 1) |
|
338
|
|
|
v[i] += (Sol[i] - xb) * Q[i] |
|
339
|
|
|
if self.rand() > r[i]: S[i] = self.localSearch(best=xb, A=A[i], task=task, i=i, Sol=Sol) |
|
340
|
|
|
else: S[i] = task.repair(Sol[i] + v[i], rnd=self.Rand) |
|
341
|
|
|
Fnew = task.eval(S[i]) |
|
342
|
|
|
if (Fnew <= Fitness[i]) and (self.rand() < (self.A_l - A[i]) / self.A): Sol[i], Fitness[i] = S[i], Fnew |
|
343
|
|
|
if Fnew <= fxb: xb, fxb = S[i].copy(), Fnew |
|
344
|
|
|
return Sol, Fitness, xb, fxb, {'A': A, 'r': r, 'S': S, 'Q': Q, 'v': v} |
|
345
|
|
|
|
|
346
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
|
347
|
|
|
|