|
1
|
|
|
# encoding=utf8 |
|
2
|
|
|
import logging |
|
3
|
|
|
|
|
4
|
|
|
from numpy import exp, random as rand, asarray |
|
5
|
|
|
|
|
6
|
|
|
from NiaPy.algorithms.algorithm import Algorithm, Individual |
|
7
|
|
|
from NiaPy.util.utility import objects2array |
|
8
|
|
|
|
|
9
|
|
|
logging.basicConfig() |
|
10
|
|
|
logger = logging.getLogger('NiaPy.algorithms.basic') |
|
11
|
|
|
logger.setLevel('INFO') |
|
12
|
|
|
|
|
13
|
|
|
__all__ = ['CamelAlgorithm'] |
|
14
|
|
|
|
|
15
|
|
|
class Camel(Individual): |
|
16
|
|
|
r"""Implementation of population individual that is a camel for Camel algorithm. |
|
17
|
|
|
|
|
18
|
|
|
Algorithm: |
|
19
|
|
|
Camel algorithm |
|
20
|
|
|
|
|
21
|
|
|
Date: |
|
22
|
|
|
2018 |
|
23
|
|
|
|
|
24
|
|
|
Authors: |
|
25
|
|
|
Klemen Berkovič |
|
26
|
|
|
|
|
27
|
|
|
License: |
|
28
|
|
|
MIT |
|
29
|
|
|
|
|
30
|
|
|
Attributes: |
|
31
|
|
|
E (float): Camel endurance. |
|
32
|
|
|
S (float): Camel supply. |
|
33
|
|
|
x_past (numpy.ndarray): Camel's past position. |
|
34
|
|
|
f_past (float): Camel's past funciton/fitness value. |
|
35
|
|
|
steps (int): Age of camel. |
|
36
|
|
|
|
|
37
|
|
|
See Also: |
|
38
|
|
|
* :class:`NiaPy.algorithms.Individual` |
|
39
|
|
|
""" |
|
40
|
|
|
def __init__(self, E_init=None, S_init=None, **kwargs): |
|
41
|
|
|
r"""Initialize the Camel. |
|
42
|
|
|
|
|
43
|
|
|
Args: |
|
44
|
|
|
E_init (Optional[float]): Starting endurance of Camel. |
|
45
|
|
|
S_init (Optional[float]): Stating supply of Camel. |
|
46
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
|
47
|
|
|
|
|
48
|
|
|
See Also: |
|
49
|
|
|
* :func:`NiaPy.algorithms.Individual.__init__` |
|
50
|
|
|
""" |
|
51
|
|
|
Individual.__init__(self, **kwargs) |
|
52
|
|
|
self.E, self.E_past = E_init, E_init |
|
53
|
|
|
self.S, self.S_past = S_init, S_init |
|
54
|
|
|
self.x_past, self.f_past = self.x, self.f |
|
55
|
|
|
self.steps = 0 |
|
56
|
|
|
|
|
57
|
|
|
def nextT(self, T_min, T_max, rnd=rand): |
|
58
|
|
|
r"""Apply nextT function on Camel. |
|
59
|
|
|
|
|
60
|
|
|
Args: |
|
61
|
|
|
T_min (float): TODO |
|
62
|
|
|
T_max (float): TODO |
|
63
|
|
|
rnd (Optional[mtrand.RandomState]): Random number generator. |
|
64
|
|
|
""" |
|
65
|
|
|
self.T = (T_max - T_min) * rnd.rand() + T_min |
|
66
|
|
|
|
|
67
|
|
|
def nextS(self, omega, n_gens): |
|
68
|
|
|
r"""Apply nextS on Camel. |
|
69
|
|
|
|
|
70
|
|
|
Args: |
|
71
|
|
|
omega (float): TODO. |
|
72
|
|
|
n_gens (int): Number of Camel Algorithm iterations/generations. |
|
73
|
|
|
""" |
|
74
|
|
|
self.S = self.S_past * (1 - omega * self.steps / n_gens) |
|
75
|
|
|
|
|
76
|
|
|
def nextE(self, n_gens, T_max): |
|
77
|
|
|
r"""Apply function nextE on function on Camel. |
|
78
|
|
|
|
|
79
|
|
|
Args: |
|
80
|
|
|
n_gens (int): Number of Camel Algorithm iterations/generations |
|
81
|
|
|
T_max (float): Maximum temperature of environment |
|
82
|
|
|
""" |
|
83
|
|
|
self.E = self.E_past * (1 - self.T / T_max) * (1 - self.steps / n_gens) |
|
84
|
|
|
|
|
85
|
|
|
def nextX(self, cb, E_init, S_init, task, rnd=rand): |
|
86
|
|
|
r"""Apply function nextX on Camel. |
|
87
|
|
|
|
|
88
|
|
|
This method/function move this Camel to new position in search space. |
|
89
|
|
|
|
|
90
|
|
|
Args: |
|
91
|
|
|
cb (Camel): Best Camel in population. |
|
92
|
|
|
E_init (float): Starting endurance of camel. |
|
93
|
|
|
S_init (float): Starting supply of camel. |
|
94
|
|
|
task (Task): Optimization task. |
|
95
|
|
|
rnd (Optional[mtrand.RandomState]): Random number generator. |
|
96
|
|
|
""" |
|
97
|
|
|
delta = -1 + rnd.rand() * 2 |
|
98
|
|
|
self.x = self.x_past + delta * (1 - (self.E / E_init)) * exp(1 - self.S / S_init) * (cb - self.x_past) |
|
99
|
|
|
if not task.isFeasible(self.x): self.x = self.x_past |
|
100
|
|
|
else: self.f = task.eval(self.x) |
|
101
|
|
|
|
|
102
|
|
|
def next(self): |
|
103
|
|
|
r"""Save new position of Camel to old position.""" |
|
104
|
|
|
self.x_past, self.f_past, self.E_past, self.S_past = self.x.copy(), self.f, self.E, self.S |
|
105
|
|
|
self.steps += 1 |
|
106
|
|
|
return self |
|
107
|
|
|
|
|
108
|
|
|
def refill(self, S=None, E=None): |
|
109
|
|
|
r"""Apply this function to Camel. |
|
110
|
|
|
|
|
111
|
|
|
Args: |
|
112
|
|
|
S (float): New value of Camel supply. |
|
113
|
|
|
E (float): New value of Camel endurance. |
|
114
|
|
|
""" |
|
115
|
|
|
self.S, self.E = S, E |
|
116
|
|
|
|
|
117
|
|
|
class CamelAlgorithm(Algorithm): |
|
118
|
|
|
r"""Implementation of Camel traveling behavior. |
|
119
|
|
|
|
|
120
|
|
|
Algorithm: |
|
121
|
|
|
Camel algorithm |
|
122
|
|
|
|
|
123
|
|
|
Date: |
|
124
|
|
|
2018 |
|
125
|
|
|
|
|
126
|
|
|
Authors: |
|
127
|
|
|
Klemen Berkovič |
|
128
|
|
|
|
|
129
|
|
|
License: |
|
130
|
|
|
MIT |
|
131
|
|
|
|
|
132
|
|
|
Reference URL: |
|
133
|
|
|
https://www.iasj.net/iasj?func=fulltext&aId=118375 |
|
134
|
|
|
|
|
135
|
|
|
Reference paper: |
|
136
|
|
|
Ali, Ramzy. (2016). Novel Optimization Algorithm Inspired by Camel Traveling Behavior. Iraq J. Electrical and Electronic Engineering. 12. 167-177. |
|
137
|
|
|
|
|
138
|
|
|
Attributes: |
|
139
|
|
|
Name (List[str]): List of strings representing name of the algorithm. |
|
140
|
|
|
T_min (float): Minimal temperature of environment. |
|
141
|
|
|
T_max (float): Maximal temperature of environment. |
|
142
|
|
|
E_init (float): Starting value of energy. |
|
143
|
|
|
S_init (float): Starting value of supplys. |
|
144
|
|
|
|
|
145
|
|
|
See Also: |
|
146
|
|
|
* :class:`NiaPy.algorithms.Algorithm` |
|
147
|
|
|
""" |
|
148
|
|
|
Name = ['CamelAlgorithm', 'CA'] |
|
149
|
|
|
|
|
150
|
|
|
@staticmethod |
|
151
|
|
|
def algorithmInfo(): |
|
152
|
|
|
r"""Get information about algorithm. |
|
153
|
|
|
|
|
154
|
|
|
Returns: |
|
155
|
|
|
str: Algorithm information |
|
156
|
|
|
""" |
|
157
|
|
|
return r'''Ali, Ramzy. (2016). Novel Optimization Algorithm Inspired by Camel Traveling Behavior. Iraq J. Electrical and Electronic Engineering. 12. 167-177.''' |
|
158
|
|
|
|
|
159
|
|
|
@staticmethod |
|
160
|
|
|
def typeParameters(): |
|
161
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
|
162
|
|
|
|
|
163
|
|
|
Returns: |
|
164
|
|
|
Dict[str, Callable]: |
|
165
|
|
|
* omega (Callable[[Union[int, float]], bool]) |
|
166
|
|
|
* mu (Callable[[float], bool]) |
|
167
|
|
|
* alpha (Callable[[float], bool]) |
|
168
|
|
|
* S_init (Callable[[Union[float, int]], bool]) |
|
169
|
|
|
* E_init (Callable[[Union[float, int]], bool]) |
|
170
|
|
|
* T_min (Callable[[Union[float, int], bool]) |
|
171
|
|
|
* T_max (Callable[[Union[float, int], bool]) |
|
172
|
|
|
|
|
173
|
|
|
See Also: |
|
174
|
|
|
* :func:`NiaPy.algorithms.Algorithm.typeParameters` |
|
175
|
|
|
""" |
|
176
|
|
|
d = Algorithm.typeParameters() |
|
177
|
|
|
d.update({ |
|
178
|
|
|
'omega': lambda x: isinstance(x, (float, int)), |
|
179
|
|
|
'mu': lambda x: isinstance(x, float) and 0 <= x <= 1, |
|
180
|
|
|
'alpha': lambda x: isinstance(x, float) and 0 <= x <= 1, |
|
181
|
|
|
'S_init': lambda x: isinstance(x, (float, int)) and x > 0, |
|
182
|
|
|
'E_init': lambda x: isinstance(x, (float, int)) and x > 0, |
|
183
|
|
|
'T_min': lambda x: isinstance(x, (float, int)) and x > 0, |
|
184
|
|
|
'T_max': lambda x: isinstance(x, (float, int)) and x > 0 |
|
185
|
|
|
}) |
|
186
|
|
|
return d |
|
187
|
|
|
|
|
188
|
|
|
def setParameters(self, NP=50, omega=0.25, mu=0.5, alpha=0.5, S_init=10, E_init=10, T_min=-10, T_max=10, **ukwargs): |
|
189
|
|
|
r"""Set the arguments of an algorithm. |
|
190
|
|
|
|
|
191
|
|
|
Arguments: |
|
192
|
|
|
NP (Optional[int]): Population size :math:`\in [1, \infty)`. |
|
193
|
|
|
T_min (Optional[float]): Minimum temperature, must be true :math:`$T_{min} < T_{max}`. |
|
194
|
|
|
T_max (Optional[float]): Maximum temperature, must be true :math:`T_{min} < T_{max}`. |
|
195
|
|
|
omega (Optional[float]): Burden factor :math:`\in [0, 1]`. |
|
196
|
|
|
mu (Optional[float]): Dying rate :math:`\in [0, 1]`. |
|
197
|
|
|
S_init (Optional[float]): Initial supply :math:`\in (0, \infty)`. |
|
198
|
|
|
E_init (Optional[float]): Initial endurance :math:`\in (0, \infty)`. |
|
199
|
|
|
|
|
200
|
|
|
See Also: |
|
201
|
|
|
* :func:`NiaPy.algorithms.Algorithm.setParameters` |
|
202
|
|
|
""" |
|
203
|
|
|
Algorithm.setParameters(self, NP=NP, itype=Camel, InitPopFunc=ukwargs.pop('InitPopFunc', self.initPop), **ukwargs) |
|
204
|
|
|
self.omega, self.mu, self.alpha, self.S_init, self.E_init, self.T_min, self.T_max = omega, mu, alpha, S_init, E_init, T_min, T_max |
|
205
|
|
|
|
|
206
|
|
|
def getParameters(self): |
|
207
|
|
|
r"""Get parameters of the algorithm. |
|
208
|
|
|
|
|
209
|
|
|
Returns: |
|
210
|
|
|
Dict[str, Any]: |
|
211
|
|
|
""" |
|
212
|
|
|
d = Algorithm.getParameters(self) |
|
213
|
|
|
d.update({ |
|
214
|
|
|
'omega': self.omega, |
|
215
|
|
|
'mu': self.mu, |
|
216
|
|
|
'alpha': self.alpha, |
|
217
|
|
|
'S_init': self.S_init, |
|
218
|
|
|
'E_init': self.E_init, |
|
219
|
|
|
'T_min': self.T_min, |
|
220
|
|
|
'T_max': self.T_max |
|
221
|
|
|
}) |
|
222
|
|
|
return d |
|
223
|
|
|
|
|
224
|
|
|
def initPop(self, task, NP, rnd, itype, **kwargs): |
|
225
|
|
|
r"""Initialize starting population. |
|
226
|
|
|
|
|
227
|
|
|
Args: |
|
228
|
|
|
task (Task): Optimization task. |
|
229
|
|
|
NP (int): Number of camels in population. |
|
230
|
|
|
rnd (mtrand.RandomState): Random number generator. |
|
231
|
|
|
itype (Individual): Individual type. |
|
232
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
|
233
|
|
|
|
|
234
|
|
|
Returns: |
|
235
|
|
|
Tuple[numpy.ndarray[Camel], numpy.ndarray[float]]: |
|
236
|
|
|
1. Initialize population of camels. |
|
237
|
|
|
2. Initialized populations function/fitness values. |
|
238
|
|
|
""" |
|
239
|
|
|
caravan = objects2array([itype(E_init=self.E_init, S_init=self.S_init, task=task, rnd=rnd, e=True) for _ in range(NP)]) |
|
240
|
|
|
return caravan, asarray([c.f for c in caravan]) |
|
241
|
|
|
|
|
242
|
|
|
def walk(self, c, cb, task): |
|
243
|
|
|
r"""Move the camel in search space. |
|
244
|
|
|
|
|
245
|
|
|
Args: |
|
246
|
|
|
c (Camel): Camel that we want to move. |
|
247
|
|
|
cb (Camel): Best know camel. |
|
248
|
|
|
task (Task): Optimization task. |
|
249
|
|
|
|
|
250
|
|
|
Returns: |
|
251
|
|
|
Camel: Camel that moved in the search space. |
|
252
|
|
|
""" |
|
253
|
|
|
c.nextT(self.T_min, self.T_max, self.Rand) |
|
254
|
|
|
c.nextS(self.omega, task.nGEN) |
|
255
|
|
|
c.nextE(task.nGEN, self.T_max) |
|
256
|
|
|
c.nextX(cb, self.E_init, self.S_init, task, self.Rand) |
|
257
|
|
|
return c |
|
258
|
|
|
|
|
259
|
|
|
def oasis(self, c, rn, alpha): |
|
260
|
|
|
r"""Apply oasis function to camel. |
|
261
|
|
|
|
|
262
|
|
|
Args: |
|
263
|
|
|
c (Camel): Camel to apply oasis on. |
|
264
|
|
|
rn (float): Random number. |
|
265
|
|
|
alpha (float): View range of Camel. |
|
266
|
|
|
|
|
267
|
|
|
Returns: |
|
268
|
|
|
Camel: Camel with appliyed oasis on. |
|
269
|
|
|
""" |
|
270
|
|
|
if rn > 1 - alpha and c.f < c.f_past: c.refill(self.S_init, self.E_init) |
|
271
|
|
|
return c |
|
272
|
|
|
|
|
273
|
|
|
def lifeCycle(self, c, mu, task): |
|
274
|
|
|
r"""Apply life cycle to Camel. |
|
275
|
|
|
|
|
276
|
|
|
Args: |
|
277
|
|
|
c (Camel): Camel to apply life cycle. |
|
278
|
|
|
mu (float): Vision range of camel. |
|
279
|
|
|
task (Task): Optimization task. |
|
280
|
|
|
|
|
281
|
|
|
Returns: |
|
282
|
|
|
Camel: Camel with life cycle applyed to it. |
|
283
|
|
|
""" |
|
284
|
|
|
if c.f_past < mu * c.f: return Camel(self.E_init, self.S_init, rnd=self.Rand, task=task) |
|
285
|
|
|
else: return c.next() |
|
286
|
|
|
|
|
287
|
|
|
def initPopulation(self, task): |
|
288
|
|
|
r"""Initialize population. |
|
289
|
|
|
|
|
290
|
|
|
Args: |
|
291
|
|
|
task (Task): Optimization taks. |
|
292
|
|
|
|
|
293
|
|
|
Returns: |
|
294
|
|
|
Tuple[numpy.ndarray[Camel], numpy.ndarray[float], dict]: |
|
295
|
|
|
1. New population of Camels. |
|
296
|
|
|
2. New population fitness/function values. |
|
297
|
|
|
3. Additional arguments. |
|
298
|
|
|
|
|
299
|
|
|
See Also: |
|
300
|
|
|
* :func:`NiaPy.algorithms.Algorithm.initPopulation` |
|
301
|
|
|
""" |
|
302
|
|
|
caravan, fcaravan, _ = Algorithm.initPopulation(self, task) |
|
303
|
|
|
return caravan, fcaravan, {} |
|
304
|
|
|
|
|
305
|
|
|
def runIteration(self, task, caravan, fcaravan, cb, fcb, **dparams): |
|
306
|
|
|
r"""Core function of Camel Algorithm. |
|
307
|
|
|
|
|
308
|
|
|
Args: |
|
309
|
|
|
task (Task): Optimization task. |
|
310
|
|
|
caravan (numpy.ndarray[Camel]): Current population of Camels. |
|
311
|
|
|
fcaravan (numpy.ndarray[float]): Current population fitness/function values. |
|
312
|
|
|
cb (Camel): Current best Camel. |
|
313
|
|
|
fcb (float): Current best Camel fitness/function value. |
|
314
|
|
|
**dparams (Dict[str, Any]): Additional arguments. |
|
315
|
|
|
|
|
316
|
|
|
Returns: |
|
317
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, folat, dict]: |
|
318
|
|
|
1. New population |
|
319
|
|
|
2. New population function/fitness value |
|
320
|
|
|
3. New global best solution |
|
321
|
|
|
4. New global best fitness/objective value |
|
322
|
|
|
5. Additional arguments |
|
323
|
|
|
""" |
|
324
|
|
|
ncaravan = objects2array([self.walk(c, cb, task) for c in caravan]) |
|
325
|
|
|
ncaravan = objects2array([self.oasis(c, self.rand(), self.alpha) for c in ncaravan]) |
|
326
|
|
|
ncaravan = objects2array([self.lifeCycle(c, self.mu, task) for c in ncaravan]) |
|
327
|
|
|
fncaravan = asarray([c.f for c in ncaravan]) |
|
328
|
|
|
cb, fcb = self.getBest(ncaravan, fncaravan, cb, fcb) |
|
329
|
|
|
return ncaravan, fncaravan, cb, fcb, {} |
|
330
|
|
|
|
|
331
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
|
332
|
|
|
|