Passed
Pull Request — master (#233)
by
unknown
01:26
created

CamelAlgorithm.getParameters()   A

Complexity

Conditions 1

Size

Total Lines 17
Code Lines 11

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 11
nop 1
dl 0
loc 17
rs 9.85
c 0
b 0
f 0
1
# encoding=utf8
2
import logging
3
4
from numpy import exp, random as rand, asarray
5
6
from NiaPy.algorithms.algorithm import Algorithm, Individual
7
from NiaPy.util.utility import objects2array
8
9
logging.basicConfig()
10
logger = logging.getLogger('NiaPy.algorithms.basic')
11
logger.setLevel('INFO')
12
13
__all__ = ['CamelAlgorithm']
14
15
class Camel(Individual):
16
	r"""Implementation of population individual that is a camel for Camel algorithm.
17
18
	Algorithm:
19
		Camel algorithm
20
21
	Date:
22
		2018
23
24
	Authors:
25
		Klemen Berkovič
26
27
	License:
28
		MIT
29
30
	Attributes:
31
		E (float): Camel endurance.
32
		S (float): Camel supply.
33
		x_past (numpy.ndarray): Camel's past position.
34
		f_past (float): Camel's past funciton/fitness value.
35
		steps (int): Age of camel.
36
37
	See Also:
38
		* :class:`NiaPy.algorithms.Individual`
39
	"""
40
	def __init__(self, E_init=None, S_init=None, **kwargs):
41
		r"""Initialize the Camel.
42
43
		Args:
44
			E_init (Optional[float]): Starting endurance of Camel.
45
			S_init (Optional[float]): Stating supply of Camel.
46
			**kwargs (Dict[str, Any]): Additional arguments.
47
48
		See Also:
49
			* :func:`NiaPy.algorithms.Individual.__init__`
50
		"""
51
		Individual.__init__(self, **kwargs)
52
		self.E, self.E_past = E_init, E_init
53
		self.S, self.S_past = S_init, S_init
54
		self.x_past, self.f_past = self.x, self.f
55
		self.steps = 0
56
57
	def nextT(self, T_min, T_max, rnd=rand):
58
		r"""Apply nextT function on Camel.
59
60
		Args:
61
			T_min (float): TODO
62
			T_max (float): TODO
63
			rnd (Optional[mtrand.RandomState]): Random number generator.
64
		"""
65
		self.T = (T_max - T_min) * rnd.rand() + T_min
66
67
	def nextS(self, omega, n_gens):
68
		r"""Apply nextS on Camel.
69
70
		Args:
71
			omega (float): TODO.
72
			n_gens (int): Number of Camel Algorithm iterations/generations.
73
		"""
74
		self.S = self.S_past * (1 - omega * self.steps / n_gens)
75
76
	def nextE(self, n_gens, T_max):
77
		r"""Apply function nextE on function on Camel.
78
79
		Args:
80
			n_gens (int): Number of Camel Algorithm iterations/generations
81
			T_max (float): Maximum temperature of environment
82
		"""
83
		self.E = self.E_past * (1 - self.T / T_max) * (1 - self.steps / n_gens)
84
85
	def nextX(self, cb, E_init, S_init, task, rnd=rand):
86
		r"""Apply function nextX on Camel.
87
88
		This method/function move this Camel to new position in search space.
89
90
		Args:
91
			cb (Camel): Best Camel in population.
92
			E_init (float): Starting endurance of camel.
93
			S_init (float): Starting supply of camel.
94
			task (Task): Optimization task.
95
			rnd (Optional[mtrand.RandomState]): Random number generator.
96
		"""
97
		delta = -1 + rnd.rand() * 2
98
		self.x = self.x_past + delta * (1 - (self.E / E_init)) * exp(1 - self.S / S_init) * (cb - self.x_past)
99
		if not task.isFeasible(self.x): self.x = self.x_past
100
		else: self.f = task.eval(self.x)
101
102
	def next(self):
103
		r"""Save new position of Camel to old position."""
104
		self.x_past, self.f_past, self.E_past, self.S_past = self.x.copy(), self.f, self.E, self.S
105
		self.steps += 1
106
		return self
107
108
	def refill(self, S=None, E=None):
109
		r"""Apply this function to Camel.
110
111
		Args:
112
			S (float): New value of Camel supply.
113
			E (float): New value of Camel endurance.
114
		"""
115
		self.S, self.E = S, E
116
117
class CamelAlgorithm(Algorithm):
118
	r"""Implementation of Camel traveling behavior.
119
120
	Algorithm:
121
		Camel algorithm
122
123
	Date:
124
		2018
125
126
	Authors:
127
		Klemen Berkovič
128
129
	License:
130
		MIT
131
132
	Reference URL:
133
		https://www.iasj.net/iasj?func=fulltext&aId=118375
134
135
	Reference paper:
136
		Ali, Ramzy. (2016). Novel Optimization Algorithm Inspired by Camel Traveling Behavior. Iraq J. Electrical and Electronic Engineering. 12. 167-177.
137
138
	Attributes:
139
		Name (List[str]): List of strings representing name of the algorithm.
140
		T_min (float): Minimal temperature of environment.
141
		T_max (float): Maximal temperature of environment.
142
		E_init (float): Starting value of energy.
143
		S_init (float): Starting value of supplys.
144
145
	See Also:
146
		* :class:`NiaPy.algorithms.Algorithm`
147
	"""
148
	Name = ['CamelAlgorithm', 'CA']
149
150
	@staticmethod
151
	def algorithmInfo():
152
		r"""Get information about algorithm.
153
154
		Returns:
155
			str: Algorithm information
156
		"""
157
		return r'''Ali, Ramzy. (2016). Novel Optimization Algorithm Inspired by Camel Traveling Behavior. Iraq J. Electrical and Electronic Engineering. 12. 167-177.'''
158
159
	@staticmethod
160
	def typeParameters():
161
		r"""Get dictionary with functions for checking values of parameters.
162
163
		Returns:
164
			Dict[str, Callable]:
165
				* omega (Callable[[Union[int, float]], bool])
166
				* mu (Callable[[float], bool])
167
				* alpha (Callable[[float], bool])
168
				* S_init (Callable[[Union[float, int]], bool])
169
				* E_init (Callable[[Union[float, int]], bool])
170
				* T_min (Callable[[Union[float, int], bool])
171
				* T_max (Callable[[Union[float, int], bool])
172
173
		See Also:
174
			* :func:`NiaPy.algorithms.Algorithm.typeParameters`
175
		"""
176
		d = Algorithm.typeParameters()
177
		d.update({
178
			'omega': lambda x: isinstance(x, (float, int)),
179
			'mu': lambda x: isinstance(x, float) and 0 <= x <= 1,
180
			'alpha': lambda x: isinstance(x, float) and 0 <= x <= 1,
181
			'S_init': lambda x: isinstance(x, (float, int)) and x > 0,
182
			'E_init': lambda x: isinstance(x, (float, int)) and x > 0,
183
			'T_min': lambda x: isinstance(x, (float, int)) and x > 0,
184
			'T_max': lambda x: isinstance(x, (float, int)) and x > 0
185
		})
186
		return d
187
188
	def setParameters(self, NP=50, omega=0.25, mu=0.5, alpha=0.5, S_init=10, E_init=10, T_min=-10, T_max=10, **ukwargs):
189
		r"""Set the arguments of an algorithm.
190
191
		Arguments:
192
			NP (Optional[int]): Population size :math:`\in [1, \infty)`.
193
			T_min (Optional[float]): Minimum temperature, must be true :math:`$T_{min} < T_{max}`.
194
			T_max (Optional[float]): Maximum temperature, must be true :math:`T_{min} < T_{max}`.
195
			omega (Optional[float]): Burden factor :math:`\in [0, 1]`.
196
			mu (Optional[float]): Dying rate :math:`\in [0, 1]`.
197
			S_init (Optional[float]): Initial supply :math:`\in (0, \infty)`.
198
			E_init (Optional[float]): Initial endurance :math:`\in (0, \infty)`.
199
200
		See Also:
201
			* :func:`NiaPy.algorithms.Algorithm.setParameters`
202
		"""
203
		Algorithm.setParameters(self, NP=NP, itype=Camel, InitPopFunc=ukwargs.pop('InitPopFunc', self.initPop), **ukwargs)
204
		self.omega, self.mu, self.alpha, self.S_init, self.E_init, self.T_min, self.T_max = omega, mu, alpha, S_init, E_init, T_min, T_max
205
206
	def getParameters(self):
207
		r"""Get parameters of the algorithm.
208
209
		Returns:
210
			Dict[str, Any]:
211
		"""
212
		d = Algorithm.getParameters(self)
213
		d.update({
214
			'omega': self.omega,
215
			'mu': self.mu,
216
			'alpha': self.alpha,
217
			'S_init': self.S_init,
218
			'E_init': self.E_init,
219
			'T_min': self.T_min,
220
			'T_max': self.T_max
221
		})
222
		return d
223
224
	def initPop(self, task, NP, rnd, itype, **kwargs):
225
		r"""Initialize starting population.
226
227
		Args:
228
			task (Task): Optimization task.
229
			NP (int): Number of camels in population.
230
			rnd (mtrand.RandomState): Random number generator.
231
			itype (Individual): Individual type.
232
			**kwargs (Dict[str, Any]): Additional arguments.
233
234
		Returns:
235
			Tuple[numpy.ndarray[Camel], numpy.ndarray[float]]:
236
				1. Initialize population of camels.
237
				2. Initialized populations function/fitness values.
238
		"""
239
		caravan = objects2array([itype(E_init=self.E_init, S_init=self.S_init, task=task, rnd=rnd, e=True) for _ in range(NP)])
240
		return caravan, asarray([c.f for c in caravan])
241
242
	def walk(self, c, cb, task):
243
		r"""Move the camel in search space.
244
245
		Args:
246
			c (Camel): Camel that we want to move.
247
			cb (Camel): Best know camel.
248
			task (Task): Optimization task.
249
250
		Returns:
251
			Camel: Camel that moved in the search space.
252
		"""
253
		c.nextT(self.T_min, self.T_max, self.Rand)
254
		c.nextS(self.omega, task.nGEN)
255
		c.nextE(task.nGEN, self.T_max)
256
		c.nextX(cb, self.E_init, self.S_init, task, self.Rand)
257
		return c
258
259
	def oasis(self, c, rn, alpha):
260
		r"""Apply oasis function to camel.
261
262
		Args:
263
			c (Camel): Camel to apply oasis on.
264
			rn (float): Random number.
265
			alpha (float): View range of Camel.
266
267
		Returns:
268
			Camel: Camel with appliyed oasis on.
269
		"""
270
		if rn > 1 - alpha and c.f < c.f_past: c.refill(self.S_init, self.E_init)
271
		return c
272
273
	def lifeCycle(self, c, mu, task):
274
		r"""Apply life cycle to Camel.
275
276
		Args:
277
			c (Camel): Camel to apply life cycle.
278
			mu (float): Vision range of camel.
279
			task (Task): Optimization task.
280
281
		Returns:
282
			Camel: Camel with life cycle applyed to it.
283
		"""
284
		if c.f_past < mu * c.f: return Camel(self.E_init, self.S_init, rnd=self.Rand, task=task)
285
		else: return c.next()
286
287
	def initPopulation(self, task):
288
		r"""Initialize population.
289
290
		Args:
291
			task (Task): Optimization taks.
292
293
		Returns:
294
			Tuple[numpy.ndarray[Camel], numpy.ndarray[float], dict]:
295
				1. New population of Camels.
296
				2. New population fitness/function values.
297
				3. Additional arguments.
298
299
		See Also:
300
			* :func:`NiaPy.algorithms.Algorithm.initPopulation`
301
		"""
302
		caravan, fcaravan, _ = Algorithm.initPopulation(self, task)
303
		return caravan, fcaravan, {}
304
305
	def runIteration(self, task, caravan, fcaravan, cb, fcb, **dparams):
306
		r"""Core function of Camel Algorithm.
307
308
		Args:
309
			task (Task): Optimization task.
310
			caravan (numpy.ndarray[Camel]): Current population of Camels.
311
			fcaravan (numpy.ndarray[float]): Current population fitness/function values.
312
			cb (Camel): Current best Camel.
313
			fcb (float): Current best Camel fitness/function value.
314
			**dparams (Dict[str, Any]): Additional arguments.
315
316
		Returns:
317
			Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, folat, dict]:
318
				1. New population
319
				2. New population function/fitness value
320
				3. New global best solution
321
				4. New global best fitness/objective value
322
				5. Additional arguments
323
		"""
324
		ncaravan = objects2array([self.walk(c, cb, task) for c in caravan])
325
		ncaravan = objects2array([self.oasis(c, self.rand(), self.alpha) for c in ncaravan])
326
		ncaravan = objects2array([self.lifeCycle(c, self.mu, task) for c in ncaravan])
327
		fncaravan = asarray([c.f for c in ncaravan])
328
		cb, fcb = self.getBest(ncaravan, fncaravan, cb, fcb)
329
		return ncaravan, fncaravan, cb, fcb, {}
330
331
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
332