1
|
|
|
# encoding=utf8 |
2
|
|
|
# pylint: disable=mixed-indentation, trailing-whitespace, multiple-statements, attribute-defined-outside-init, logging-not-lazy, no-self-use, len-as-condition, singleton-comparison, arguments-differ, bad-continuation |
3
|
|
|
import logging |
4
|
|
|
from math import ceil |
5
|
|
|
|
6
|
|
|
from numpy import apply_along_axis, vectorize, argmin, argmax, full, tril |
7
|
|
|
|
8
|
|
|
from NiaPy.algorithms.algorithm import Algorithm, Individual, defaultIndividualInit, defaultNumPyInit |
9
|
|
|
|
10
|
|
|
logging.basicConfig() |
11
|
|
|
logger = logging.getLogger('NiaPy.algorithms.basic') |
12
|
|
|
logger.setLevel('INFO') |
13
|
|
|
|
14
|
|
|
__all__ = ['MonkeyKingEvolutionV1', 'MonkeyKingEvolutionV2', 'MonkeyKingEvolutionV3'] |
15
|
|
|
|
16
|
|
|
class MkeSolution(Individual): |
17
|
|
|
r"""Implementation of Monkey King Evolution individual. |
18
|
|
|
|
19
|
|
|
Data: |
20
|
|
|
2018 |
21
|
|
|
|
22
|
|
|
Authors: |
23
|
|
|
Klemen Berkovič |
24
|
|
|
|
25
|
|
|
License: |
26
|
|
|
MIT |
27
|
|
|
|
28
|
|
|
Attributes: |
29
|
|
|
x_pb (array of (float or int)): Personal best position of Monkey particle. |
30
|
|
|
f_pb (float): Personal best fitness/function value. |
31
|
|
|
MonkeyKing (bool): Boolean value indicating if particle is Monkey King particle. |
32
|
|
|
|
33
|
|
|
See Also: |
34
|
|
|
* :class:`NiaPy.algorithms.Individual` |
35
|
|
|
""" |
36
|
|
|
def __init__(self, **kwargs): |
37
|
|
|
r"""Initialize Monkey particle. |
38
|
|
|
|
39
|
|
|
Args: |
40
|
|
|
**kwargs: Additional arguments |
41
|
|
|
|
42
|
|
|
See Also: |
43
|
|
|
* :class:`NiaPy.algorithms.Individual.__init__()` |
44
|
|
|
""" |
45
|
|
|
Individual.__init__(self, **kwargs) |
46
|
|
|
self.f_pb, self.x_pb = self.f, self.x |
47
|
|
|
self.MonkeyKing = False |
48
|
|
|
|
49
|
|
|
def uPersonalBest(self): |
50
|
|
|
r"""Update presonal best position of particle.""" |
51
|
|
|
if self.f < self.f_pb: self.x_pb, self.f_pb = self.x, self.f |
52
|
|
|
|
53
|
|
|
class MonkeyKingEvolutionV1(Algorithm): |
54
|
|
|
r"""Implementation of monkey king evolution algorithm version 1. |
55
|
|
|
|
56
|
|
|
Algorithm: |
57
|
|
|
Monkey King Evolution version 1 |
58
|
|
|
|
59
|
|
|
Date: |
60
|
|
|
2018 |
61
|
|
|
|
62
|
|
|
Authors: |
63
|
|
|
Klemen Berkovič |
64
|
|
|
|
65
|
|
|
License: |
66
|
|
|
MIT |
67
|
|
|
|
68
|
|
|
Reference URL: |
69
|
|
|
https://www.sciencedirect.com/science/article/pii/S0950705116000198 |
70
|
|
|
|
71
|
|
|
Reference paper: |
72
|
|
|
Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009. |
73
|
|
|
|
74
|
|
|
Attributes: |
75
|
|
|
Name (List[str]): List of strings representing algorithm names. |
76
|
|
|
F (float): Scale factor for normal particles. |
77
|
|
|
R (float): TODO. |
78
|
|
|
C (int): Number of new particles generated by Monkey King particle. |
79
|
|
|
FC (float): Scale factor for Monkey King particles. |
80
|
|
|
|
81
|
|
|
See Also: |
82
|
|
|
* :class:`NiaPy.algorithms.algorithm.Algorithm` |
83
|
|
|
""" |
84
|
|
|
Name = ['MonkeyKingEvolutionV1', 'MKEv1'] |
85
|
|
|
|
86
|
|
|
@staticmethod |
87
|
|
|
def algorithmInfo(): |
88
|
|
|
r"""Get basic information of algorithm. |
89
|
|
|
|
90
|
|
|
Returns: |
91
|
|
|
str: Basic information. |
92
|
|
|
|
93
|
|
|
See Also: |
94
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
95
|
|
|
""" |
96
|
|
|
return r"""Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009.""" |
97
|
|
|
|
98
|
|
View Code Duplication |
@staticmethod |
|
|
|
|
99
|
|
|
def typeParameters(): |
100
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
101
|
|
|
|
102
|
|
|
Returns: |
103
|
|
|
Dict[str, Callable]: |
104
|
|
|
* F (Callable[[int], bool]) |
105
|
|
|
* R (Callable[[Union[int, float]], bool]) |
106
|
|
|
* C (Callable[[Union[int, float]], bool]) |
107
|
|
|
* FC (Callable[[Union[int, float]], bool]) |
108
|
|
|
""" |
109
|
|
|
d = Algorithm.typeParameters() |
110
|
|
|
d.update({ |
111
|
|
|
'NP': lambda x: isinstance(x, int) and x > 0, |
112
|
|
|
'F': lambda x: isinstance(x, (float, int)) and x > 0, |
113
|
|
|
'R': lambda x: isinstance(x, (float, int)) and x > 0, |
114
|
|
|
'C': lambda x: isinstance(x, int) and x > 0, |
115
|
|
|
'FC': lambda x: isinstance(x, (float, int)) and x > 0 |
116
|
|
|
}) |
117
|
|
|
return d |
118
|
|
|
|
119
|
|
|
def setParameters(self, NP=40, F=0.7, R=0.3, C=3, FC=0.5, **ukwargs): |
120
|
|
|
r"""Set Monkey King Evolution v1 algorithms static parameters. |
121
|
|
|
|
122
|
|
|
Args: |
123
|
|
|
NP (int): Population size. |
124
|
|
|
F (float): Scale factor for normal particle. |
125
|
|
|
R (float): Procentual value of now many new particle Monkey King particle creates. Value in rage [0, 1]. |
126
|
|
|
C (int): Number of new particles generated by Monkey King particle. |
127
|
|
|
FC (float): Scale factor for Monkey King particles. |
128
|
|
|
**ukwargs (Dict[str, Any]): Additional arguments. |
129
|
|
|
|
130
|
|
|
See Also: |
131
|
|
|
* :func:`NiaPy.algorithms.algorithm.Algorithm.setParameters` |
132
|
|
|
""" |
133
|
|
|
Algorithm.setParameters(self, NP=NP, itype=ukwargs.pop('itype', MkeSolution), InitPopFunc=ukwargs.pop('InitPopFunc', defaultIndividualInit), **ukwargs) |
134
|
|
|
self.F, self.R, self.C, self.FC = F, R, C, FC |
135
|
|
|
if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) |
136
|
|
|
|
137
|
|
|
def moveP(self, x, x_pb, x_b, task): |
138
|
|
|
r"""Move normal particle in search space. |
139
|
|
|
|
140
|
|
|
For moving particles algorithm uses next formula: |
141
|
|
|
:math:`\mathbf{x_{pb} - \mathit{F} \odot \mathbf{r} \odot (\mathbf{x_b} - \mathbf{x})` |
142
|
|
|
where |
143
|
|
|
:math:`\mathbf{r}` is one dimension array with `D` components. Components in this vector are in range [0, 1]. |
144
|
|
|
|
145
|
|
|
Args: |
146
|
|
|
x (numpy.ndarray): Paticle position. |
147
|
|
|
x_pb (numpy.ndarray): Particle best position. |
148
|
|
|
x_b (numpy.ndarray): Best particle position. |
149
|
|
|
task (Task): Optimization task. |
150
|
|
|
|
151
|
|
|
Returns: |
152
|
|
|
numpy.ndarray: Particle new position. |
153
|
|
|
""" |
154
|
|
|
return x_pb + self.F * self.rand(task.D) * (x_b - x) |
155
|
|
|
|
156
|
|
|
def moveMK(self, x, task): |
157
|
|
|
r"""Move Mokey King paticle. |
158
|
|
|
|
159
|
|
|
For moving Monkey King particles algorithm uses next formula: |
160
|
|
|
:math:`\mathbf{x} + \mathit{FC} \odot \mathbf{R} \odot \mathbf{x}` |
161
|
|
|
where |
162
|
|
|
:math:`\mathbf{R}` is two dimensional array with shape `{C * D, D}`. Componentes of this array are in range [0, 1] |
163
|
|
|
|
164
|
|
|
Args: |
165
|
|
|
x (numpy.ndarray): Monkey King patricle position. |
166
|
|
|
task (Task): Optimization task. |
167
|
|
|
|
168
|
|
|
Returns: |
169
|
|
|
numpy.ndarray: New particles generated by Monkey King particle. |
170
|
|
|
""" |
171
|
|
|
return x + self.FC * self.rand([int(self.C * task.D), task.D]) * x |
172
|
|
|
|
173
|
|
|
def movePartice(self, p, p_b, task): |
174
|
|
|
r"""Move patricles. |
175
|
|
|
|
176
|
|
|
Args: |
177
|
|
|
p (MkeSolution): Monke particle. |
178
|
|
|
p_b (MkeSolution): Population best particle. |
179
|
|
|
task (Task): Optimization task. |
180
|
|
|
""" |
181
|
|
|
p.x = self.moveP(p.x, p.x_pb, p_b.x, task) |
182
|
|
|
p.evaluate(task, rnd=self.Rand) |
183
|
|
|
|
184
|
|
|
def moveMokeyKingPartice(self, p, task): |
185
|
|
|
r"""Move Monky King Particles. |
186
|
|
|
|
187
|
|
|
Args: |
188
|
|
|
p (MkeSolution): Monkey King particle to apply this function on. |
189
|
|
|
task (Task): Optimization task |
190
|
|
|
""" |
191
|
|
|
p.MonkeyKing = False |
192
|
|
|
A = apply_along_axis(task.repair, 1, self.moveMK(p.x, task), self.Rand) |
193
|
|
|
A_f = apply_along_axis(task.eval, 1, A) |
194
|
|
|
ib = argmin(A_f) |
195
|
|
|
p.x, p.f = A[ib], A_f[ib] |
196
|
|
|
|
197
|
|
|
def movePopulation(self, pop, xb, task): |
198
|
|
|
r"""Move population. |
199
|
|
|
|
200
|
|
|
Args: |
201
|
|
|
pop (numpy.ndarray[MkeSolution]): Current population. |
202
|
|
|
xb (MkeSolution): Current best solution. |
203
|
|
|
task (Task): Optimization task. |
204
|
|
|
|
205
|
|
|
Returns: |
206
|
|
|
numpy.ndarray[MkeSolution]: New particles. |
207
|
|
|
""" |
208
|
|
|
for p in pop: |
209
|
|
|
if p.MonkeyKing: self.moveMokeyKingPartice(p, task) |
210
|
|
|
else: self.movePartice(p, xb, task) |
211
|
|
|
p.uPersonalBest() |
212
|
|
|
return pop |
213
|
|
|
|
214
|
|
|
def initPopulation(self, task): |
215
|
|
|
r"""Init population. |
216
|
|
|
|
217
|
|
|
Args: |
218
|
|
|
task (Task): Optimization task |
219
|
|
|
|
220
|
|
|
Returns: |
221
|
|
|
Tuple(numpy.ndarray[MkeSolution], numpy.ndarray[float], Dict[str, Any]]: |
222
|
|
|
1. Initialized solutions |
223
|
|
|
2. Fitness/function values of solution |
224
|
|
|
3. Additional arguments |
225
|
|
|
""" |
226
|
|
|
pop, fpop, _ = Algorithm.initPopulation(self, task) |
227
|
|
|
for i in self.Rand.choice(self.NP, int(self.R * len(pop)), replace=False): pop[i].MonkeyKing = True |
228
|
|
|
return pop, fpop, {} |
229
|
|
|
|
230
|
|
|
def runIteration(self, task, pop, fpop, xb, fxb, **dparams): |
231
|
|
|
r"""Core function of Monkey King Evolution v1 algorithm. |
232
|
|
|
|
233
|
|
|
Args: |
234
|
|
|
task (Task): Optimization task |
235
|
|
|
pop (numpy.ndarray[MkeSolution]): Current population |
236
|
|
|
fpop (numpy.ndarray[float]): Current population fitness/function values |
237
|
|
|
xb (MkeSolution): Current best solution. |
238
|
|
|
fxb (float): Current best solutions function/fitness value. |
239
|
|
|
**dparams (Dict[str, Any]): Additional arguments. |
240
|
|
|
|
241
|
|
|
Returns: |
242
|
|
|
Tuple(numpy.ndarray[MkeSolution], numpy.ndarray[float], Dict[str, Any]]: |
243
|
|
|
1. Initialized solutions. |
244
|
|
|
2. Fitness/function values of solution. |
245
|
|
|
3. Additional arguments. |
246
|
|
|
""" |
247
|
|
|
pop = self.movePopulation(pop, xb, task) |
248
|
|
|
for i in self.Rand.choice(self.NP, int(self.R * len(pop)), replace=False): pop[i].MonkeyKing = True |
249
|
|
|
return pop, [m.f for m in pop], {} |
250
|
|
|
|
251
|
|
|
class MonkeyKingEvolutionV2(MonkeyKingEvolutionV1): |
252
|
|
|
r"""Implementation of monkey king evolution algorithm version 2. |
253
|
|
|
|
254
|
|
|
Algorithm: |
255
|
|
|
Monkey King Evolution version 2 |
256
|
|
|
|
257
|
|
|
Date: |
258
|
|
|
2018 |
259
|
|
|
|
260
|
|
|
Authors: |
261
|
|
|
Klemen Berkovič |
262
|
|
|
|
263
|
|
|
License: |
264
|
|
|
MIT |
265
|
|
|
|
266
|
|
|
Reference URL: |
267
|
|
|
https://www.sciencedirect.com/science/article/pii/S0950705116000198 |
268
|
|
|
|
269
|
|
|
Reference paper: |
270
|
|
|
Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009. |
271
|
|
|
|
272
|
|
|
Attributes: |
273
|
|
|
Name (List[str]): List of strings representing algorithm names. |
274
|
|
|
|
275
|
|
|
See Also: |
276
|
|
|
* :class:`NiaPy.algorithms.basic.mke.MonkeyKingEvolutionV1` |
277
|
|
|
""" |
278
|
|
|
Name = ['MonkeyKingEvolutionV2', 'MKEv2'] |
279
|
|
|
|
280
|
|
|
@staticmethod |
281
|
|
|
def algorithmInfo(): |
282
|
|
|
r"""Get basic information of algorithm. |
283
|
|
|
|
284
|
|
|
Returns: |
285
|
|
|
str: Basic information. |
286
|
|
|
|
287
|
|
|
See Also: |
288
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
289
|
|
|
""" |
290
|
|
|
return r"""Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009.""" |
291
|
|
|
|
292
|
|
|
def moveMK(self, x, dx, task): |
293
|
|
|
r"""Move Monkey King particle. |
294
|
|
|
|
295
|
|
|
For movment of particles algorithm uses next formula: |
296
|
|
|
:math:`\mathbf{x} - \mathit{FC} \odot \mathbf{dx}` |
297
|
|
|
|
298
|
|
|
Args: |
299
|
|
|
x (numpy.ndarray): Particle to apply movment on. |
300
|
|
|
dx (numpy.ndarray): Difference between to random paricles in population. |
301
|
|
|
task (Task): Optimization task. |
302
|
|
|
|
303
|
|
|
Returns: |
304
|
|
|
numpy.ndarray: Moved particles. |
305
|
|
|
""" |
306
|
|
|
return x - self.FC * dx |
307
|
|
|
|
308
|
|
|
def moveMokeyKingPartice(self, p, pop, task): |
309
|
|
|
r"""Move Monkey King particles. |
310
|
|
|
|
311
|
|
|
Args: |
312
|
|
|
p (MkeSolution): Monkey King particle to move. |
313
|
|
|
pop (numpy.ndarray[MkeSolution]): Current population. |
314
|
|
|
task (Task): Optimization task. |
315
|
|
|
""" |
316
|
|
|
p.MonkeyKing = False |
317
|
|
|
p_b, p_f = p.x, p.f |
318
|
|
|
for _i in range(int(self.C * self.NP)): |
319
|
|
|
r = self.Rand.choice(self.NP, 2, replace=False) |
320
|
|
|
a = task.repair(self.moveMK(p.x, pop[r[0]].x - pop[r[1]].x, task), self.Rand) |
321
|
|
|
a_f = task.eval(a) |
322
|
|
|
if a_f < p_f: p_b, p_f = a, a_f |
323
|
|
|
p.x, p.f = p_b, p_f |
324
|
|
|
|
325
|
|
|
def movePopulation(self, pop, xb, task): |
326
|
|
|
r"""Move population. |
327
|
|
|
|
328
|
|
|
Args: |
329
|
|
|
pop (numpy.ndarray[MkeSolution]): Current population. |
330
|
|
|
xb (MkeSolution): Current best solution. |
331
|
|
|
task (Task): Optimization task. |
332
|
|
|
|
333
|
|
|
Returns: |
334
|
|
|
numpy.ndarray[MkeSolution]: Moved population. |
335
|
|
|
""" |
336
|
|
|
for p in pop: |
337
|
|
|
if p.MonkeyKing: self.moveMokeyKingPartice(p, pop, task) |
338
|
|
|
else: self.movePartice(p, xb, task) |
339
|
|
|
p.uPersonalBest() |
340
|
|
|
return pop |
341
|
|
|
|
342
|
|
|
class MonkeyKingEvolutionV3(MonkeyKingEvolutionV1): |
343
|
|
|
r"""Implementation of monkey king evolution algorithm version 3. |
344
|
|
|
|
345
|
|
|
Algorithm: |
346
|
|
|
Monkey King Evolution version 3 |
347
|
|
|
|
348
|
|
|
Date: |
349
|
|
|
2018 |
350
|
|
|
|
351
|
|
|
Authors: |
352
|
|
|
Klemen Berkovič |
353
|
|
|
|
354
|
|
|
License: |
355
|
|
|
MIT |
356
|
|
|
|
357
|
|
|
Reference URL: |
358
|
|
|
https://www.sciencedirect.com/science/article/pii/S0950705116000198 |
359
|
|
|
|
360
|
|
|
Reference paper: |
361
|
|
|
Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009. |
362
|
|
|
|
363
|
|
|
Attributes: |
364
|
|
|
Name (List[str]): List of strings that represent algorithm names. |
365
|
|
|
|
366
|
|
|
See Also: |
367
|
|
|
* :class:`NiaPy.algorithms.basic.mke.MonkeyKingEvolutionV1` |
368
|
|
|
""" |
369
|
|
|
Name = ['MonkeyKingEvolutionV3', 'MKEv3'] |
370
|
|
|
|
371
|
|
|
@staticmethod |
372
|
|
|
def algorithmInfo(): |
373
|
|
|
r"""Get basic information of algorithm. |
374
|
|
|
|
375
|
|
|
Returns: |
376
|
|
|
str: Basic information. |
377
|
|
|
|
378
|
|
|
See Also: |
379
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
380
|
|
|
""" |
381
|
|
|
return r"""Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009.""" |
382
|
|
|
|
383
|
|
|
def setParameters(self, **ukwargs): |
384
|
|
|
r"""Set core parameters of MonkeyKingEvolutionV3 algorithm. |
385
|
|
|
|
386
|
|
|
Args: |
387
|
|
|
**ukwargs (Dict[str, Any]): Additional arguments. |
388
|
|
|
|
389
|
|
|
See Also: |
390
|
|
|
* :func:`NiaPy.algorithms.basic.MonkeyKingEvolutionV1.setParameters` |
391
|
|
|
""" |
392
|
|
|
MonkeyKingEvolutionV1.setParameters(self, itype=ukwargs.pop('itype', None), InitPopFunc=ukwargs.pop('InitPopFunc', defaultNumPyInit), **ukwargs) |
393
|
|
|
|
394
|
|
|
def neg(self, x): |
395
|
|
|
r"""Transform function. |
396
|
|
|
|
397
|
|
|
Args: |
398
|
|
|
x (Union[int, float]): Sould be 0 or 1. |
399
|
|
|
|
400
|
|
|
Returns: |
401
|
|
|
float: If 0 thet 1 else 1 then 0. |
402
|
|
|
""" |
403
|
|
|
return 0.0 if x == 1.0 else 1.0 |
404
|
|
|
|
405
|
|
|
def initPopulation(self, task): |
406
|
|
|
r"""Initialize the population. |
407
|
|
|
|
408
|
|
|
Args: |
409
|
|
|
task (Task): Optimization task. |
410
|
|
|
|
411
|
|
|
Returns: |
412
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
413
|
|
|
1. Initialized population. |
414
|
|
|
2. Initialized population function/fitness values. |
415
|
|
|
3. Additional arguments: |
416
|
|
|
* k (int): TODO. |
417
|
|
|
* c (int): TODO. |
418
|
|
|
|
419
|
|
|
See Also: |
420
|
|
|
* :func:`NiaPy.algorithms.algorithm.Algorithm.initPopulation` |
421
|
|
|
""" |
422
|
|
|
X, X_f, d = Algorithm.initPopulation(self, task) |
423
|
|
|
k, c = int(ceil(self.NP / task.D)), int(ceil(self.C * task.D)) |
424
|
|
|
d.update({'k': k, 'c': c}) |
425
|
|
|
return X, X_f, d |
426
|
|
|
|
427
|
|
|
def runIteration(self, task, X, X_f, xb, fxb, k, c, **dparams): |
428
|
|
|
r"""Core funciton of Monkey King Evolution v3 algorithm. |
429
|
|
|
|
430
|
|
|
Args: |
431
|
|
|
task (Task): Optimization task |
432
|
|
|
X (numpy.ndarray): Current population |
433
|
|
|
X_f (numpy.ndarray[float]): Current population fitness/function values |
434
|
|
|
xb (numpy.ndarray): Current best individual |
435
|
|
|
fxb (float): Current best individual function/fitness value |
436
|
|
|
k (int): TODO |
437
|
|
|
c (int: TODO |
438
|
|
|
**dparams: Additional arguments |
439
|
|
|
|
440
|
|
|
Returns: |
441
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
442
|
|
|
1. Initialized population. |
443
|
|
|
2. Initialized population function/fitness values. |
444
|
|
|
3. Additional arguments: |
445
|
|
|
* k (int): TODO. |
446
|
|
|
* c (int): TODO. |
447
|
|
|
""" |
448
|
|
|
X_gb = apply_along_axis(task.repair, 1, xb + self.FC * X[self.Rand.choice(len(X), c)] - X[self.Rand.choice(len(X), c)], self.Rand) |
449
|
|
|
X_gb_f = apply_along_axis(task.eval, 1, X_gb) |
450
|
|
|
M = full([self.NP, task.D], 1.0) |
451
|
|
|
for i in range(k): M[i * task.D:(i + 1) * task.D] = tril(M[i * task.D:(i + 1) * task.D]) |
452
|
|
|
for i in range(self.NP): self.Rand.shuffle(M[i]) |
453
|
|
|
X = apply_along_axis(task.repair, 1, M * X + vectorize(self.neg)(M) * xb, self.Rand) |
454
|
|
|
X_f = apply_along_axis(task.eval, 1, X) |
455
|
|
|
iw, ib_gb = argmax(X_f), argmin(X_gb_f) |
456
|
|
|
if X_gb_f[ib_gb] <= X_f[iw]: X[iw], X_f[iw] = X_gb[ib_gb], X_gb_f[ib_gb] |
457
|
|
|
return X, X_f, {'k': k, 'c': c} |
458
|
|
|
|
459
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
460
|
|
|
|