|
1
|
|
|
# encoding=utf8 |
|
2
|
|
|
import logging |
|
3
|
|
|
from numpy import random as rand |
|
4
|
|
|
from NiaPy.algorithms.algorithm import Algorithm |
|
5
|
|
|
|
|
6
|
|
|
logging.basicConfig() |
|
7
|
|
|
logger = logging.getLogger('NiaPy.algorithms.other') |
|
8
|
|
|
logger.setLevel('INFO') |
|
9
|
|
|
|
|
10
|
|
|
__all__ = ['TabuSearch'] |
|
11
|
|
|
|
|
12
|
|
|
# TODO implement algorithm |
|
13
|
|
|
|
|
14
|
|
|
def TabuSearchF(task, SR=None, TL_size=25, rnd=rand): |
|
15
|
|
|
if SR == None: SR = task.bRange |
|
16
|
|
|
x = rnd.uniform(task.Lower, task.Upper) |
|
17
|
|
|
x_f = task.eval(x) |
|
18
|
|
|
# while not task.stopCondI(): |
|
19
|
|
|
# Generate neigours |
|
20
|
|
|
# evaluate x not in ts |
|
21
|
|
|
# get best of of evaluated |
|
22
|
|
|
# compare new best with best |
|
23
|
|
|
return x, x_f |
|
24
|
|
|
|
|
25
|
|
|
class TabuSearch(Algorithm): |
|
26
|
|
|
r"""Implementation of Tabu Search Algorithm. |
|
27
|
|
|
|
|
28
|
|
|
Algorithm: |
|
29
|
|
|
Tabu Search Algorithm |
|
30
|
|
|
|
|
31
|
|
|
Date: |
|
32
|
|
|
2018 |
|
33
|
|
|
|
|
34
|
|
|
Authors: |
|
35
|
|
|
Klemen Berkovič |
|
36
|
|
|
|
|
37
|
|
|
License: |
|
38
|
|
|
MIT |
|
39
|
|
|
|
|
40
|
|
|
Reference URL: |
|
41
|
|
|
http://www.cleveralgorithms.com/nature-inspired/stochastic/tabu_search.html |
|
42
|
|
|
|
|
43
|
|
|
Reference paper: |
|
44
|
|
|
|
|
45
|
|
|
Attributes: |
|
46
|
|
|
Name (List[str]): List of strings representing algorithm name. |
|
47
|
|
|
""" |
|
48
|
|
|
Name = ['TabuSearch', 'TS'] |
|
49
|
|
|
|
|
50
|
|
|
@staticmethod |
|
51
|
|
|
def algorithmInfo(): |
|
52
|
|
|
r"""Get basic information of algorithm. |
|
53
|
|
|
|
|
54
|
|
|
Returns: |
|
55
|
|
|
str: Basic information of algorithm. |
|
56
|
|
|
|
|
57
|
|
|
See Also: |
|
58
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
|
59
|
|
|
""" |
|
60
|
|
|
return r"""None""" |
|
61
|
|
|
|
|
62
|
|
|
@staticmethod |
|
63
|
|
|
def typeParameters(): return { |
|
64
|
|
|
'NP': lambda x: isinstance(x, int) and x > 0 |
|
65
|
|
|
} |
|
66
|
|
|
|
|
67
|
|
|
def setParameters(self, **ukwargs): |
|
68
|
|
|
r"""Set the algorithm parameters/arguments.""" |
|
69
|
|
|
Algorithm.setParameters(self, **ukwargs) |
|
70
|
|
|
|
|
71
|
|
|
def move(self): return list() |
|
72
|
|
|
|
|
73
|
|
|
def runIteration(self, task, pop, fpop, xb, fxb, **dparams): |
|
74
|
|
|
r"""Core function of the algorithm. |
|
75
|
|
|
|
|
76
|
|
|
Args: |
|
77
|
|
|
task (Task): Optimization task. |
|
78
|
|
|
pop (numpy.ndarray): Current population. |
|
79
|
|
|
fpop (numpy.ndarray): Individuals fitness/objective values. |
|
80
|
|
|
xb (numpy.ndarray): Global best solution. |
|
81
|
|
|
fxb (float): Global best solutions fitness/objective value. |
|
82
|
|
|
**dparams (dict): |
|
83
|
|
|
|
|
84
|
|
|
Returns: |
|
85
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, dict]: |
|
86
|
|
|
""" |
|
87
|
|
|
return pop, fpop, xb, fxb, dparams |
|
88
|
|
|
|
|
89
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
|
90
|
|
|
|