1
|
|
|
# encoding=utf8 |
2
|
|
|
import logging |
3
|
|
|
from numpy import random as rand |
4
|
|
|
from NiaPy.algorithms.algorithm import Algorithm |
5
|
|
|
|
6
|
|
|
logging.basicConfig() |
7
|
|
|
logger = logging.getLogger('NiaPy.algorithms.other') |
8
|
|
|
logger.setLevel('INFO') |
9
|
|
|
|
10
|
|
|
__all__ = ['TabuSearch'] |
11
|
|
|
|
12
|
|
|
# TODO implement algorithm |
13
|
|
|
|
14
|
|
|
def TabuSearchF(task, SR=None, TL_size=25, rnd=rand): |
15
|
|
|
if SR == None: SR = task.bRange |
16
|
|
|
x = rnd.uniform(task.Lower, task.Upper) |
17
|
|
|
x_f = task.eval(x) |
18
|
|
|
# while not task.stopCondI(): |
19
|
|
|
# Generate neigours |
20
|
|
|
# evaluate x not in ts |
21
|
|
|
# get best of of evaluated |
22
|
|
|
# compare new best with best |
23
|
|
|
return x, x_f |
24
|
|
|
|
25
|
|
|
class TabuSearch(Algorithm): |
26
|
|
|
r"""Implementation of Tabu Search Algorithm. |
27
|
|
|
|
28
|
|
|
Algorithm: |
29
|
|
|
Tabu Search Algorithm |
30
|
|
|
|
31
|
|
|
Date: |
32
|
|
|
2018 |
33
|
|
|
|
34
|
|
|
Authors: |
35
|
|
|
Klemen Berkovič |
36
|
|
|
|
37
|
|
|
License: |
38
|
|
|
MIT |
39
|
|
|
|
40
|
|
|
Reference URL: |
41
|
|
|
http://www.cleveralgorithms.com/nature-inspired/stochastic/tabu_search.html |
42
|
|
|
|
43
|
|
|
Reference paper: |
44
|
|
|
|
45
|
|
|
Attributes: |
46
|
|
|
Name (List[str]): List of strings representing algorithm name. |
47
|
|
|
""" |
48
|
|
|
Name = ['TabuSearch', 'TS'] |
49
|
|
|
|
50
|
|
|
@staticmethod |
51
|
|
|
def typeParameters(): return { |
52
|
|
|
'NP': lambda x: isinstance(x, int) and x > 0 |
53
|
|
|
} |
54
|
|
|
|
55
|
|
|
def setParameters(self, **ukwargs): |
56
|
|
|
r"""Set the algorithm parameters/arguments.""" |
57
|
|
|
Algorithm.setParameters(self, **ukwargs) |
58
|
|
|
|
59
|
|
|
def move(self): return list() |
60
|
|
|
|
61
|
|
|
def runIteration(self, task, pop, fpop, xb, fxb, **dparams): |
62
|
|
|
r"""Core function of the algorithm. |
63
|
|
|
|
64
|
|
|
Args: |
65
|
|
|
task (Task): Optimization task. |
66
|
|
|
pop (numpy.ndarray): Current population. |
67
|
|
|
fpop (numpy.ndarray): Individuals fitness/objective values. |
68
|
|
|
xb (numpy.ndarray): Global best solution. |
69
|
|
|
fxb (float): Global best solutions fitness/objective value. |
70
|
|
|
**dparams (dict): |
71
|
|
|
|
72
|
|
|
Returns: |
73
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, dict]: |
74
|
|
|
""" |
75
|
|
|
return pop, fpop, xb, fxb, dparams |
76
|
|
|
|
77
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
78
|
|
|
|