Completed
Push — master ( cc7745...279fb5 )
by Grega
19s queued 17s
created

MothFlameOptimizer.setParameters()   A

Complexity

Conditions 1

Size

Total Lines 10
Code Lines 2

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 2
nop 3
dl 0
loc 10
rs 10
c 0
b 0
f 0
1
# encoding=utf8
2
import logging
3
4
from numpy import apply_along_axis, zeros, argsort, concatenate, array, exp, cos, pi
5
6
from NiaPy.algorithms.algorithm import Algorithm
7
8
logging.basicConfig()
9
logger = logging.getLogger('NiaPy.algorithms.basic')
10
logger.setLevel('INFO')
11
12
__all__ = ['MothFlameOptimizer']
13
14
class MothFlameOptimizer(Algorithm):
15
	r"""MothFlameOptimizer of Moth flame optimizer.
16
17
	Algorithm:
18
		Moth flame optimizer
19
20
	Date:
21
		2018
22
23
	Author:
24
		Kivanc Guckiran and Klemen Berkovič
25
26
	License:
27
		MIT
28
29
	Reference paper:
30
		Mirjalili, Seyedali. "Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm." Knowledge-Based Systems 89 (2015): 228-249.
31
32
	Attributes:
33
		Name (List[str]): List of strings representing algorithm name.
34
35
	See Also:
36
		* :class:`NiaPy.algorithms.algorithm.Algorithm`
37
	"""
38
	Name = ['MothFlameOptimizer', 'MFO']
39
40
	@staticmethod
41
	def algorithmInfo():
42
		r"""Get basic information of algorithm.
43
44
		Returns:
45
			str: Basic information.
46
47
		See Also:
48
			* :func:`NiaPy.algorithms.Algorithm.algorithmInfo`
49
		"""
50
		return r"""Mirjalili, Seyedali. "Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm." Knowledge-Based Systems 89 (2015): 228-249."""
51
52
	@staticmethod
53
	def typeParameters():
54
		r"""Get dictionary with functions for checking values of parameters.
55
56
		Returns:
57
			Dict[str, Callable]: TODO
58
59
		See Also:
60
			* :func:`NiaPy.algorithms.algorithm.Algorithm.typeParameters`
61
		"""
62
		return Algorithm.typeParameters()
63
64
	def setParameters(self, NP=25, **ukwargs):
65
		r"""Set the algorithm parameters.
66
67
		Arguments:
68
			NP (int): Number of individuals in population
69
70
		See Also:
71
			* :func:`NiaPy.algorithms.algorithm.Algorithm.setParameters`
72
		"""
73
		Algorithm.setParameters(self, NP=NP, **ukwargs)
74
75
	def initPopulation(self, task):
76
		r"""Initialize starting population.
77
78
		Args:
79
			task (Task): Optimization task
80
81
		Returns:
82
			Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]:
83
				1. Initialized population
84
				2. Initialized population function/fitness values
85
				3. Additional arguments:
86
					* best_flames (numpy.ndarray): Best individuals
87
					* best_flame_fitness (numpy.ndarray): Best individuals fitness/function values
88
					* previous_population (numpy.ndarray): Previous population
89
					* previous_fitness (numpy.ndarray[float]): Previous population fitness/function values
90
91
		See Also:
92
			* :func:`NiaPy.algorithms.algorithm.Algorithm.initPopulation`
93
		"""
94
		moth_pos, moth_fitness, d = Algorithm.initPopulation(self, task)
95
		# Create best population
96
		indexes = argsort(moth_fitness)
97
		best_flames, best_flame_fitness = moth_pos[indexes], moth_fitness[indexes]
98
		# Init previous population
99
		previous_population, previous_fitness = zeros((self.NP, task.D)), zeros(self.NP)
100
		d.update({'best_flames': best_flames, 'best_flame_fitness': best_flame_fitness, 'previous_population': previous_population, 'previous_fitness': previous_fitness})
101
		return moth_pos, moth_fitness, d
102
103
	def runIteration(self, task, moth_pos, moth_fitness, xb, fxb, best_flames, best_flame_fitness, previous_population, previous_fitness, **dparams):
104
		r"""Core function of MothFlameOptimizer algorithm.
105
106
		Args:
107
			task (Task): Optimization task.
108
			moth_pos (numpy.ndarray): Current population.
109
			moth_fitness (numpy.ndarray): Current population fitness/function values.
110
			xb (numpy.ndarray): Current population best individual.
111
			fxb (float): Current best individual
112
			best_flames (numpy.ndarray): Best found individuals
113
			best_flame_fitness (numpy.ndarray): Best found individuals fitness/function values
114
			previous_population (numpy.ndarray): Previous population
115
			previous_fitness (numpy.ndarray): Previous population fitness/function values
116
			**dparams (Dict[str, Any]): Additional parameters
117
118
		Returns:
119
			Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, Dict[str, Any]]:
120
				1. New population.
121
				2. New population fitness/function values.
122
				3. New global best solution
123
				4. New global best fitness/objective value
124
				5. Additional arguments:
125
					* best_flames (numpy.ndarray): Best individuals.
126
					* best_flame_fitness (numpy.ndarray): Best individuals fitness/function values.
127
					* previous_population (numpy.ndarray): Previous population.
128
					* previous_fitness (numpy.ndarray): Previous population fitness/function values.
129
		"""
130
		# Previous positions
131
		previous_population, previous_fitness = moth_pos, moth_fitness
132
		# Create sorted population
133
		indexes = argsort(moth_fitness)
134
		sorted_population = moth_pos[indexes]
135
		# Some parameters
136
		flame_no, a = round(self.NP - task.Iters * ((self.NP - 1) / task.nGEN)), -1 + task.Iters * ((-1) / task.nGEN)
137
		for i in range(self.NP):
138
			for j in range(task.D):
139
				distance_to_flame, b, t = abs(sorted_population[i, j] - moth_pos[i, j]), 1, (a - 1) * self.rand() + 1
140
				if i <= flame_no: moth_pos[i, j] = distance_to_flame * exp(b * t) * cos(2 * pi * t) + sorted_population[i, j]
141
				else: moth_pos[i, j] = distance_to_flame * exp(b * t) * cos(2 * pi * t) + sorted_population[flame_no, j]
142
		moth_pos = apply_along_axis(task.repair, 1, moth_pos, self.Rand)
143
		moth_fitness = apply_along_axis(task.eval, 1, moth_pos)
144
		xb, fxb = self.getBest(moth_pos, moth_fitness, xb, fxb)
145
		double_population, double_fitness = concatenate((previous_population, best_flames), axis=0), concatenate((previous_fitness, best_flame_fitness), axis=0)
146
		indexes = argsort(double_fitness)
147
		double_sorted_fitness, double_sorted_population = double_fitness[indexes], double_population[indexes]
148
		for newIdx in range(2 * self.NP): double_sorted_population[newIdx] = array(double_population[indexes[newIdx], :])
149
		best_flame_fitness, best_flames = double_sorted_fitness[:self.NP], double_sorted_population[:self.NP]
150
		return moth_pos, moth_fitness, xb, fxb, {'best_flames': best_flames, 'best_flame_fitness': best_flame_fitness, 'previous_population': previous_population, 'previous_fitness': previous_fitness}
151
152
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
153