1
|
|
|
import random as rnd |
2
|
|
|
import copy |
3
|
|
|
from NiaPy.benchmarks.utility import Utility |
4
|
|
|
|
5
|
|
|
__all__ = ['ParticleSwarmAlgorithm'] |
6
|
|
|
|
7
|
|
|
|
8
|
|
|
class Particle(object): |
9
|
|
|
"""Defines particle for population.""" |
10
|
|
|
|
11
|
|
|
def __init__(self, D, LB, UB, vMin, vMax): |
12
|
|
|
self.D = D # dimension of the problem |
13
|
|
|
self.LB = LB # lower bound |
14
|
|
|
self.UB = UB # upper bound |
15
|
|
|
self.vMin = vMin # minimal velocity |
16
|
|
|
self.vMax = vMax # maximal velocity |
17
|
|
|
self.Solution = [] |
18
|
|
|
self.Velocity = [] |
19
|
|
|
|
20
|
|
|
self.pBestPosition = [] |
21
|
|
|
self.pBestSolution = [] |
22
|
|
|
self.bestFitness = float('inf') |
23
|
|
|
|
24
|
|
|
self.Fitness = float('inf') |
25
|
|
|
self.generateParticle() |
26
|
|
|
|
27
|
|
|
def generateParticle(self): |
28
|
|
|
self.Solution = [self.LB + (self.UB - self.LB) * rnd.random() |
29
|
|
|
for _i in range(self.D)] |
30
|
|
|
self.Velocity = [0 for _i in range(self.D)] |
31
|
|
|
|
32
|
|
|
self.pBestSolution = [0 for _i in range(self.D)] |
33
|
|
|
self.bestFitness = float('inf') |
34
|
|
|
|
35
|
|
|
def evaluate(self): |
36
|
|
|
self.Fitness = Particle.FuncEval(self.D, self.Solution) |
37
|
|
|
self.checkPersonalBest() |
38
|
|
|
|
39
|
|
|
def checkPersonalBest(self): |
40
|
|
|
if self.Fitness < self.bestFitness: |
41
|
|
|
self.pBestSolution = self.Solution |
42
|
|
|
self.bestFitness = self.Fitness |
43
|
|
|
|
44
|
|
|
def simpleBound(self): |
45
|
|
|
for i in range(self.D): |
46
|
|
|
if self.Solution[i] < self.LB: |
47
|
|
|
self.Solution[i] = self.LB |
48
|
|
|
if self.Solution[i] > self.UB: |
49
|
|
|
self.Solution[i] = self.UB |
50
|
|
|
if self.Velocity[i] < self.vMin: |
51
|
|
|
self.Velocity[i] = self.vMin |
52
|
|
|
if self.Velocity[i] > self.vMax: |
53
|
|
|
self.Velocity[i] = self.vMax |
54
|
|
|
|
55
|
|
|
def toString(self): |
56
|
|
|
pass |
57
|
|
|
|
58
|
|
|
def __eq__(self, other): |
59
|
|
|
return self.Solution == other.Solution and self.Fitness == other.Fitness |
60
|
|
|
|
61
|
|
|
|
62
|
|
|
class ParticleSwarmAlgorithm(object): |
63
|
|
|
r"""Implementation of Particle Swarm Optimization algorithm. |
64
|
|
|
|
65
|
|
|
**Algorithm:** Particle Swarm Optimization algorithm |
66
|
|
|
|
67
|
|
|
**Date:** 2018 |
68
|
|
|
|
69
|
|
|
**Author:** Uros Mlakar |
70
|
|
|
|
71
|
|
|
**License:** MIT |
72
|
|
|
|
73
|
|
|
**Reference paper:** |
74
|
|
|
Kennedy, J. and Eberhart, R. "Particle Swarm Optimization". |
75
|
|
|
Proceedings of IEEE International Conference on Neural Networks. |
76
|
|
|
IV. pp. 1942--1948, 1995. |
77
|
|
|
|
78
|
|
|
EDITED: TODO: Tests and validation! Bug in code. |
79
|
|
|
""" |
80
|
|
|
|
81
|
|
|
def __init__(self, Np, D, nFES, C1, C2, w, velocityMin,velocityMax, weightMin, weightMax, benchmark): |
|
|
|
|
82
|
|
|
r"""**__init__(self, Np, D, nFES, C1, C2, w, vMin, vMax, benchmark)**. |
83
|
|
|
|
84
|
|
|
Arguments: |
85
|
|
|
NP {integer} -- population size |
86
|
|
|
|
87
|
|
|
D {integer} -- dimension of problem |
88
|
|
|
|
89
|
|
|
nFES {integer} -- number of function evaluations |
90
|
|
|
|
91
|
|
|
C1 {decimal} -- cognitive component |
92
|
|
|
|
93
|
|
|
C2 {decimal} -- social component |
94
|
|
|
|
95
|
|
|
w {decimal} -- inertia weight |
96
|
|
|
|
97
|
|
|
vMin {decimal} -- minimal velocity |
98
|
|
|
|
99
|
|
|
vMax {decimal} -- maximal velocity |
100
|
|
|
|
101
|
|
|
benchmark {object} -- benchmark implementation object |
102
|
|
|
|
103
|
|
|
""" |
104
|
|
|
|
105
|
|
|
self.benchmark = Utility().get_benchmark(benchmark) |
106
|
|
|
self.Np = Np # population size; number of search agents |
107
|
|
|
self.D = D # dimension of the problem |
108
|
|
|
self.C1 = C1 # cognitive component |
109
|
|
|
self.C2 = C2 # social component |
110
|
|
|
self.w = w # initial inertia weight |
111
|
|
|
self.wMin = weightMin |
|
|
|
|
112
|
|
|
self.wMax = weightMax |
113
|
|
|
self.vMin = velocityMin # minimal velocity |
114
|
|
|
self.vMax = velocityMax # maximal velocity |
115
|
|
|
self.Lower = self.benchmark.Lower # lower bound |
116
|
|
|
self.Upper = self.benchmark.Upper # upper bound |
117
|
|
|
self.Swarm = [] |
118
|
|
|
self.nFES = nFES # number of function evaluations |
119
|
|
|
self.FEs = 0 |
120
|
|
|
self.Done = False |
121
|
|
|
Particle.FuncEval = staticmethod(self.benchmark.function()) |
122
|
|
|
|
123
|
|
|
self.gBest = Particle( |
124
|
|
|
self.D, |
125
|
|
|
self.Lower, |
126
|
|
|
self.Upper, |
127
|
|
|
self.vMin, |
128
|
|
|
self.vMax) |
129
|
|
|
|
130
|
|
|
def evalSwarm(self): |
131
|
|
|
for p in self.Swarm: |
132
|
|
|
p.evaluate() |
133
|
|
|
if p.Fitness < self.gBest.Fitness: |
134
|
|
|
self.gBest = copy.deepcopy(p) |
135
|
|
|
|
136
|
|
|
def initSwarm(self): |
137
|
|
|
for _i in range(self.Np): |
138
|
|
|
self.Swarm.append( |
139
|
|
|
Particle(self.D, |
140
|
|
|
self.Lower, |
141
|
|
|
self.Upper, |
142
|
|
|
self.vMin, |
143
|
|
|
self.vMax)) |
144
|
|
|
|
145
|
|
|
def tryEval(self, p): |
146
|
|
|
if self.FEs <= self.nFES: |
147
|
|
|
p.evaluate() |
148
|
|
|
self.FEs += 1 |
149
|
|
|
else: |
150
|
|
|
self.Done = True |
151
|
|
|
|
152
|
|
|
def moveSwarm(self, Swarm): |
153
|
|
|
MovedSwarm = [] |
154
|
|
|
for p in Swarm: |
155
|
|
|
|
156
|
|
|
part1 = ([(a - b) * rnd.random() * self.C1 for a, |
157
|
|
|
b in zip(p.pBestSolution, p.Solution)]) |
158
|
|
|
part2 = ([(a - b) * rnd.random() * self.C2 for a, |
159
|
|
|
b in zip(self.gBest.Solution, p.Solution)]) |
160
|
|
|
|
161
|
|
|
p.Velocity = ([self.w * a + b + c for a, b, |
162
|
|
|
c in zip(p.Velocity, part1, part2)]) |
163
|
|
|
p.Solution = ([a + b for a, b in zip(p.Solution, p.Velocity)]) |
164
|
|
|
|
165
|
|
|
p.simpleBound() |
166
|
|
|
self.tryEval(p) |
167
|
|
|
if p.Fitness < self.gBest.Fitness: |
168
|
|
|
self.gBest = copy.deepcopy(p) |
169
|
|
|
|
170
|
|
|
MovedSwarm.append(p) |
171
|
|
|
return MovedSwarm |
172
|
|
|
|
173
|
|
|
def run(self): |
174
|
|
|
self.initSwarm() |
175
|
|
|
self.evalSwarm() |
176
|
|
|
self.FEs += self.Np |
177
|
|
|
NumIters = int(self.nFES / self.Np) |
178
|
|
|
CurrentIter=0 |
|
|
|
|
179
|
|
|
while not self.Done: |
180
|
|
|
MovedSwarm = self.moveSwarm(self.Swarm) |
181
|
|
|
self.Swarm = MovedSwarm |
182
|
|
|
self.w=self.wMax-CurrentIter*((self.wMax-self.wMin)/NumIters) |
|
|
|
|
183
|
|
|
CurrentIter += 1 |
184
|
|
|
|
185
|
|
|
return self.gBest.Fitness |
186
|
|
|
|