|
1
|
|
|
# encoding=utf8 |
|
2
|
|
|
# pylint: disable=mixed-indentation, multiple-statements, logging-not-lazy, attribute-defined-outside-init, arguments-differ, bad-continuation, unused-argument |
|
3
|
|
|
import logging |
|
4
|
|
|
|
|
5
|
|
|
from NiaPy.algorithms.basic import BatAlgorithm |
|
6
|
|
|
from NiaPy.algorithms.basic.de import CrossBest1 |
|
7
|
|
|
|
|
8
|
|
|
logging.basicConfig() |
|
9
|
|
|
logger = logging.getLogger('NiaPy.algorithms.modified') |
|
10
|
|
|
logger.setLevel('INFO') |
|
11
|
|
|
|
|
12
|
|
|
__all__ = ['HybridBatAlgorithm'] |
|
13
|
|
|
|
|
14
|
|
|
class HybridBatAlgorithm(BatAlgorithm): |
|
15
|
|
|
r"""Implementation of Hybrid bat algorithm. |
|
16
|
|
|
|
|
17
|
|
|
Algorithm: |
|
18
|
|
|
Hybrid bat algorithm |
|
19
|
|
|
|
|
20
|
|
|
Date: |
|
21
|
|
|
2018 |
|
22
|
|
|
|
|
23
|
|
|
Author: |
|
24
|
|
|
Grega Vrbancic and Klemen Berkovič |
|
25
|
|
|
|
|
26
|
|
|
License: |
|
27
|
|
|
MIT |
|
28
|
|
|
|
|
29
|
|
|
Reference paper: |
|
30
|
|
|
Fister Jr., Iztok and Fister, Dusan and Yang, Xin-She. "A Hybrid Bat Algorithm". Elektrotehniski vestnik, 2013. 1-7. |
|
31
|
|
|
|
|
32
|
|
|
Attributes: |
|
33
|
|
|
Name (List[str]): List of strings representing algorithm name. |
|
34
|
|
|
F (float): Scaling factor. |
|
35
|
|
|
CR (float): Crossover. |
|
36
|
|
|
|
|
37
|
|
|
See Also: |
|
38
|
|
|
* :class:`NiaPy.algorithms.basic.BatAlgorithm` |
|
39
|
|
|
""" |
|
40
|
|
|
Name = ['HybridBatAlgorithm', 'HBA'] |
|
41
|
|
|
|
|
42
|
|
|
@staticmethod |
|
43
|
|
|
def typeParameters(): |
|
44
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
|
45
|
|
|
|
|
46
|
|
|
Returns: |
|
47
|
|
|
Dict[str, Callable]: |
|
48
|
|
|
* F (Callable[[Union[int, float]], bool]): Scaling factor. |
|
49
|
|
|
* CR (Callable[[float], bool]): Crossover probability. |
|
50
|
|
|
""" |
|
51
|
|
|
d = BatAlgorithm.typeParameters() |
|
52
|
|
|
d['F'] = lambda x: isinstance(x, (int, float)) and x > 0 |
|
53
|
|
|
d['CR'] = lambda x: isinstance(x, float) and 0 <= x <= 1 |
|
54
|
|
|
return d |
|
55
|
|
|
|
|
56
|
|
|
def setParameters(self, F=0.78, CR=0.35, CrossMutt=CrossBest1, **ukwargs): |
|
57
|
|
|
r"""Set core parameters of HybridBatAlgorithm algorithm. |
|
58
|
|
|
|
|
59
|
|
|
Arguments: |
|
60
|
|
|
F (Optional[float]): Scaling factor. |
|
61
|
|
|
CR (Optional[float]): Crossover. |
|
62
|
|
|
|
|
63
|
|
|
See Also: |
|
64
|
|
|
* :func:`NiaPy.algorithms.basic.BatAlgorithm.setParameters` |
|
65
|
|
|
""" |
|
66
|
|
|
BatAlgorithm.setParameters(self, **ukwargs) |
|
67
|
|
|
self.F, self.CR, self.CrossMutt = F, CR, CrossMutt |
|
68
|
|
|
if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) |
|
69
|
|
|
|
|
70
|
|
|
def generateBest(self, best, task, i, Sol, **kwargs): |
|
71
|
|
|
r"""Generate new solution based on global best known solution. |
|
72
|
|
|
|
|
73
|
|
|
Args: |
|
74
|
|
|
best (numpy.ndarray): Global best individual. |
|
75
|
|
|
task (Task): Optimization task. |
|
76
|
|
|
i (int): Index of current individual. |
|
77
|
|
|
Sol (numpy.ndarray): Current best population. |
|
78
|
|
|
**kwargs (Dict[str, Any]): |
|
79
|
|
|
|
|
80
|
|
|
Returns: |
|
81
|
|
|
numpy.ndarray: New solution based on global best individual. |
|
82
|
|
|
""" |
|
83
|
|
|
return task.repair(self.CrossMutt(Sol, i, best, self.F, self.CR, rnd=self.Rand), rnd=self.Rand) |
|
84
|
|
|
|
|
85
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
|
86
|
|
|
|