|
1
|
|
|
# encoding=utf8 |
|
2
|
|
|
|
|
3
|
|
|
"""The implementation of tasks.""" |
|
4
|
|
|
|
|
5
|
|
|
import logging |
|
6
|
|
|
from enum import Enum |
|
7
|
|
|
|
|
8
|
|
|
from matplotlib import pyplot as plt, animation as anim |
|
9
|
|
|
from numpy import inf, random as rand, asarray |
|
10
|
|
|
from numpy.core.multiarray import ndarray, dot |
|
11
|
|
|
from numpy.core.umath import fabs |
|
12
|
|
|
|
|
13
|
|
|
from NiaPy.util import ( |
|
14
|
|
|
limit_repair, |
|
15
|
|
|
fullArray, |
|
16
|
|
|
FesException, |
|
17
|
|
|
GenException, |
|
18
|
|
|
RefException |
|
19
|
|
|
) |
|
20
|
|
|
from NiaPy.benchmarks.utility import Utility |
|
21
|
|
|
|
|
22
|
|
|
|
|
23
|
|
|
logging.basicConfig() |
|
24
|
|
|
logger = logging.getLogger("NiaPy.task.Task") |
|
25
|
|
|
logger.setLevel("INFO") |
|
26
|
|
|
|
|
27
|
|
|
|
|
28
|
|
|
class OptimizationType(Enum): |
|
29
|
|
|
r"""Enum representing type of optimization. |
|
30
|
|
|
|
|
31
|
|
|
Attributes: |
|
32
|
|
|
MINIMIZATION (int): Represents minimization problems and is default optimization type of all algorithms. |
|
33
|
|
|
MAXIMIZATION (int): Represents maximization problems. |
|
34
|
|
|
|
|
35
|
|
|
""" |
|
36
|
|
|
|
|
37
|
|
|
MINIMIZATION = 1.0 |
|
38
|
|
|
MAXIMIZATION = -1.0 |
|
39
|
|
|
|
|
40
|
|
|
|
|
41
|
|
|
class Task: |
|
42
|
|
|
r"""Class representing problem to solve with optimization. |
|
43
|
|
|
|
|
44
|
|
|
Date: |
|
45
|
|
|
2019 |
|
46
|
|
|
|
|
47
|
|
|
Author: |
|
48
|
|
|
Klemen Berkovič and others |
|
49
|
|
|
|
|
50
|
|
|
Attributes: |
|
51
|
|
|
D (int): Dimension of the problem. |
|
52
|
|
|
Lower (numpy.ndarray): Lower bounds of the problem. |
|
53
|
|
|
Upper (numpy.ndarray): Upper bounds of the problem. |
|
54
|
|
|
bRange (numpy.ndarray): Search range between upper and lower limits. |
|
55
|
|
|
optType (OptimizationType): Optimization type to use. |
|
56
|
|
|
|
|
57
|
|
|
See Also: |
|
58
|
|
|
* :class:`NiaPy.util.Utility` |
|
59
|
|
|
|
|
60
|
|
|
""" |
|
61
|
|
|
|
|
62
|
|
|
D = 0 |
|
63
|
|
|
benchmark = None |
|
64
|
|
|
Lower, Upper, bRange = inf, inf, inf |
|
65
|
|
|
optType = OptimizationType.MINIMIZATION |
|
66
|
|
|
|
|
67
|
|
|
def __init__(self, D=0, optType=OptimizationType.MINIMIZATION, benchmark=None, Lower=None, Upper=None, frepair=limit_repair, **kwargs): |
|
68
|
|
|
r"""Initialize task class for optimization. |
|
69
|
|
|
|
|
70
|
|
|
Arguments: |
|
71
|
|
|
D (Optional[int]): Number of dimensions. |
|
72
|
|
|
optType (Optional[OptimizationType]): Set the type of optimization. |
|
73
|
|
|
benchmark (Union[str, Benchmark]): Problem to solve with optimization. |
|
74
|
|
|
Lower (Optional[numpy.ndarray]): Lower limits of the problem. |
|
75
|
|
|
Upper (Optional[numpy.ndarray]): Upper limits of the problem. |
|
76
|
|
|
frepair (Optional[Callable[[numpy.ndarray, numpy.ndarray, numpy.ndarray, Dict[str, Any]], numpy.ndarray]]): Function for reparing individuals components to desired limits. |
|
77
|
|
|
|
|
78
|
|
|
See Also: |
|
79
|
|
|
* `func`:NiaPy.util.Utility.__init__` |
|
80
|
|
|
* `func`:NiaPy.util.Utility.repair` |
|
81
|
|
|
|
|
82
|
|
|
""" |
|
83
|
|
|
|
|
84
|
|
|
# dimension of the problem |
|
85
|
|
|
self.D = D |
|
86
|
|
|
# set optimization type |
|
87
|
|
|
self.optType = optType |
|
88
|
|
|
# set optimization function |
|
89
|
|
|
self.benchmark = Utility().get_benchmark(benchmark) if benchmark is not None else None |
|
90
|
|
|
|
|
91
|
|
|
if self.benchmark is not None: |
|
92
|
|
|
self.Fun = self.benchmark.function() if self.benchmark is not None else None |
|
93
|
|
|
|
|
94
|
|
|
# set Lower limits |
|
95
|
|
|
if Lower is not None: |
|
96
|
|
|
self.Lower = fullArray(Lower, self.D) |
|
97
|
|
|
elif Lower is None and benchmark is not None: |
|
98
|
|
|
self.Lower = fullArray(self.benchmark.Lower, self.D) |
|
99
|
|
|
else: |
|
100
|
|
|
self.Lower = fullArray(0, self.D) |
|
101
|
|
|
|
|
102
|
|
|
# set Upper limits |
|
103
|
|
|
if Upper is not None: |
|
104
|
|
|
self.Upper = fullArray(Upper, self.D) |
|
105
|
|
|
elif Upper is None and benchmark is not None: |
|
106
|
|
|
self.Upper = fullArray(self.benchmark.Upper, self.D) |
|
107
|
|
|
else: |
|
108
|
|
|
self.Upper = fullArray(0, self.D) |
|
109
|
|
|
|
|
110
|
|
|
# set range |
|
111
|
|
|
self.bRange = self.Upper - self.Lower |
|
112
|
|
|
# set repair function |
|
113
|
|
|
self.frepair = frepair |
|
114
|
|
|
|
|
115
|
|
|
def dim(self): |
|
116
|
|
|
r"""Get the number of dimensions. |
|
117
|
|
|
|
|
118
|
|
|
Returns: |
|
119
|
|
|
int: Dimension of problem optimizing. |
|
120
|
|
|
|
|
121
|
|
|
""" |
|
122
|
|
|
|
|
123
|
|
|
return self.D |
|
124
|
|
|
|
|
125
|
|
|
def bcLower(self): |
|
126
|
|
|
r"""Get the array of lower bound constraint. |
|
127
|
|
|
|
|
128
|
|
|
Returns: |
|
129
|
|
|
numpy.ndarray: Lower bound. |
|
130
|
|
|
|
|
131
|
|
|
""" |
|
132
|
|
|
|
|
133
|
|
|
return self.Lower |
|
134
|
|
|
|
|
135
|
|
|
def bcUpper(self): |
|
136
|
|
|
r"""Get the array of upper bound constraint. |
|
137
|
|
|
|
|
138
|
|
|
Returns: |
|
139
|
|
|
numpy.ndarray: Upper bound. |
|
140
|
|
|
|
|
141
|
|
|
""" |
|
142
|
|
|
|
|
143
|
|
|
return self.Upper |
|
144
|
|
|
|
|
145
|
|
|
def bcRange(self): |
|
146
|
|
|
r"""Get the range of bound constraint. |
|
147
|
|
|
|
|
148
|
|
|
Returns: |
|
149
|
|
|
numpy.ndarray: Range between lower and upper bound. |
|
150
|
|
|
|
|
151
|
|
|
""" |
|
152
|
|
|
|
|
153
|
|
|
return self.Upper - self.Lower |
|
154
|
|
|
|
|
155
|
|
|
def repair(self, x, rnd=rand): |
|
156
|
|
|
r"""Repair solution and put the solution in the random position inside of the bounds of problem. |
|
157
|
|
|
|
|
158
|
|
|
Arguments: |
|
159
|
|
|
x (numpy.ndarray): Solution to check and repair if needed. |
|
160
|
|
|
rnd (mtrand.RandomState): Random number generator. |
|
161
|
|
|
|
|
162
|
|
|
Returns: |
|
163
|
|
|
numpy.ndarray: Fixed solution. |
|
164
|
|
|
|
|
165
|
|
|
See Also: |
|
166
|
|
|
* :func:`NiaPy.util.limitRepair` |
|
167
|
|
|
* :func:`NiaPy.util.limitInversRepair` |
|
168
|
|
|
* :func:`NiaPy.util.wangRepair` |
|
169
|
|
|
* :func:`NiaPy.util.randRepair` |
|
170
|
|
|
* :func:`NiaPy.util.reflectRepair` |
|
171
|
|
|
|
|
172
|
|
|
""" |
|
173
|
|
|
|
|
174
|
|
|
return self.frepair(x, self.Lower, self.Upper, rnd=rnd) |
|
175
|
|
|
|
|
176
|
|
|
def nextIter(self): |
|
177
|
|
|
r"""Increments the number of algorithm iterations.""" |
|
178
|
|
|
|
|
179
|
|
|
def start(self): |
|
180
|
|
|
r"""Start stopwatch.""" |
|
181
|
|
|
|
|
182
|
|
|
def eval(self, A): |
|
183
|
|
|
r"""Evaluate the solution A. |
|
184
|
|
|
|
|
185
|
|
|
Arguments: |
|
186
|
|
|
A (numpy.ndarray): Solution to evaluate. |
|
187
|
|
|
|
|
188
|
|
|
Returns: |
|
189
|
|
|
float: Fitness/function values of solution. |
|
190
|
|
|
|
|
191
|
|
|
""" |
|
192
|
|
|
|
|
193
|
|
|
return self.Fun(self.D, A) * self.optType.value |
|
194
|
|
|
|
|
195
|
|
|
def isFeasible(self, A): |
|
196
|
|
|
r"""Check if the solution is feasible. |
|
197
|
|
|
|
|
198
|
|
|
Arguments: |
|
199
|
|
|
A (Union[numpy.ndarray, Individual]): Solution to check for feasibility. |
|
200
|
|
|
|
|
201
|
|
|
Returns: |
|
202
|
|
|
bool: `True` if solution is in feasible space else `False`. |
|
203
|
|
|
|
|
204
|
|
|
""" |
|
205
|
|
|
|
|
206
|
|
|
return False not in (A >= self.Lower) and False not in (A <= self.Upper) |
|
207
|
|
|
|
|
208
|
|
|
def stopCond(self): |
|
209
|
|
|
r"""Check if optimization task should stop. |
|
210
|
|
|
|
|
211
|
|
|
Returns: |
|
212
|
|
|
bool: `True` if stopping condition is meet else `False`. |
|
213
|
|
|
|
|
214
|
|
|
""" |
|
215
|
|
|
|
|
216
|
|
|
return False |
|
217
|
|
|
|
|
218
|
|
|
|
|
219
|
|
|
class CountingTask(Task): |
|
220
|
|
|
r"""Optimization task with added counting of function evaluations and algorithm iterations/generations. |
|
221
|
|
|
|
|
222
|
|
|
Attributes: |
|
223
|
|
|
Iters (int): Number of algorithm iterations/generations. |
|
224
|
|
|
Evals (int): Number of function evaluations. |
|
225
|
|
|
|
|
226
|
|
|
See Also: |
|
227
|
|
|
* :class:`NiaPy.util.Task` |
|
228
|
|
|
|
|
229
|
|
|
""" |
|
230
|
|
|
|
|
231
|
|
|
def __init__(self, **kwargs): |
|
232
|
|
|
r"""Initialize counting task. |
|
233
|
|
|
|
|
234
|
|
|
Args: |
|
235
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
|
236
|
|
|
|
|
237
|
|
|
See Also: |
|
238
|
|
|
* :func:`NiaPy.util.Task.__init__` |
|
239
|
|
|
|
|
240
|
|
|
""" |
|
241
|
|
|
|
|
242
|
|
|
Task.__init__(self, **kwargs) |
|
243
|
|
|
self.Iters, self.Evals = 0, 0 |
|
244
|
|
|
|
|
245
|
|
|
def eval(self, A): |
|
246
|
|
|
r"""Evaluate the solution A. |
|
247
|
|
|
|
|
248
|
|
|
This function increments function evaluation counter `self.Evals`. |
|
249
|
|
|
|
|
250
|
|
|
Arguments: |
|
251
|
|
|
A (numpy.ndarray): Solutions to evaluate. |
|
252
|
|
|
|
|
253
|
|
|
Returns: |
|
254
|
|
|
float: Fitness/function values of solution. |
|
255
|
|
|
|
|
256
|
|
|
See Also: |
|
257
|
|
|
* :func:`NiaPy.util.Task.eval` |
|
258
|
|
|
|
|
259
|
|
|
""" |
|
260
|
|
|
|
|
261
|
|
|
r = Task.eval(self, A) |
|
262
|
|
|
self.Evals += 1 |
|
263
|
|
|
return r |
|
264
|
|
|
|
|
265
|
|
|
def evals(self): |
|
266
|
|
|
r"""Get the number of evaluations made. |
|
267
|
|
|
|
|
268
|
|
|
Returns: |
|
269
|
|
|
int: Number of evaluations made. |
|
270
|
|
|
|
|
271
|
|
|
""" |
|
272
|
|
|
|
|
273
|
|
|
return self.Evals |
|
274
|
|
|
|
|
275
|
|
|
def iters(self): |
|
276
|
|
|
r"""Get the number of algorithm iteratins made. |
|
277
|
|
|
|
|
278
|
|
|
Returns: |
|
279
|
|
|
int: Number of generations/iterations made by algorithm. |
|
280
|
|
|
|
|
281
|
|
|
""" |
|
282
|
|
|
|
|
283
|
|
|
return self.Iters |
|
284
|
|
|
|
|
285
|
|
|
def nextIter(self): |
|
286
|
|
|
r"""Increases the number of algorithm iterations made. |
|
287
|
|
|
|
|
288
|
|
|
This function increments number of algorithm iterations/generations counter `self.Iters`. |
|
289
|
|
|
|
|
290
|
|
|
""" |
|
291
|
|
|
|
|
292
|
|
|
self.Iters += 1 |
|
293
|
|
|
|
|
294
|
|
|
|
|
295
|
|
|
class StoppingTask(CountingTask): |
|
296
|
|
|
r"""Optimization task with implemented checking for stopping criterias. |
|
297
|
|
|
|
|
298
|
|
|
Attributes: |
|
299
|
|
|
nGEN (int): Maximum number of algorithm iterations/generations. |
|
300
|
|
|
nFES (int): Maximum number of function evaluations. |
|
301
|
|
|
refValue (float): Reference function/fitness values to reach in optimization. |
|
302
|
|
|
x (numpy.ndarray): Best found individual. |
|
303
|
|
|
x_f (float): Best found individual function/fitness value. |
|
304
|
|
|
|
|
305
|
|
|
See Also: |
|
306
|
|
|
* :class:`NiaPy.util.CountingTask` |
|
307
|
|
|
|
|
308
|
|
|
""" |
|
309
|
|
|
|
|
310
|
|
|
def __init__(self, nFES=inf, nGEN=inf, refValue=None, logger=False, **kwargs): |
|
311
|
|
|
r"""Initialize task class for optimization. |
|
312
|
|
|
|
|
313
|
|
|
Arguments: |
|
314
|
|
|
nFES (Optional[int]): Number of function evaluations. |
|
315
|
|
|
nGEN (Optional[int]): Number of generations or iterations. |
|
316
|
|
|
refValue (Optional[float]): Reference value of function/fitness function. |
|
317
|
|
|
|
|
318
|
|
|
Note: |
|
319
|
|
|
Storing improvements during the evolutionary cycle is |
|
320
|
|
|
captured in self.n_evals and self.x_f_vals |
|
321
|
|
|
|
|
322
|
|
|
See Also: |
|
323
|
|
|
* :func:`NiaPy.util.CountingTask.__init__` |
|
324
|
|
|
|
|
325
|
|
|
""" |
|
326
|
|
|
|
|
327
|
|
|
CountingTask.__init__(self, **kwargs) |
|
328
|
|
|
self.refValue = (-inf if refValue is None else refValue) |
|
329
|
|
|
self.logger = logger |
|
330
|
|
|
self.x, self.x_f = None, inf |
|
331
|
|
|
self.nFES, self.nGEN = nFES, nGEN |
|
332
|
|
|
self.n_evals = [] |
|
333
|
|
|
self.x_f_vals = [] |
|
334
|
|
|
|
|
335
|
|
|
def eval(self, A): |
|
336
|
|
|
r"""Evaluate solution. |
|
337
|
|
|
|
|
338
|
|
|
Args: |
|
339
|
|
|
A (numpy.ndarray): Solution to evaluate. |
|
340
|
|
|
|
|
341
|
|
|
Returns: |
|
342
|
|
|
float: Fitness/function value of solution. |
|
343
|
|
|
|
|
344
|
|
|
See Also: |
|
345
|
|
|
* :func:`NiaPy.util.StoppingTask.stopCond` |
|
346
|
|
|
* :func:`NiaPy.util.CountingTask.eval` |
|
347
|
|
|
|
|
348
|
|
|
""" |
|
349
|
|
|
|
|
350
|
|
|
if self.stopCond(): |
|
351
|
|
|
return inf * self.optType.value |
|
352
|
|
|
|
|
353
|
|
|
x_f = CountingTask.eval(self, A) |
|
354
|
|
|
|
|
355
|
|
|
if x_f < self.x_f: |
|
356
|
|
|
self.x_f = x_f |
|
357
|
|
|
self.n_evals.append(self.Evals) |
|
358
|
|
|
self.x_f_vals.append(x_f) |
|
359
|
|
|
if self.logger: |
|
360
|
|
|
logger.info('nFES:%d => %s' % (self.Evals, self.x_f)) |
|
361
|
|
|
|
|
362
|
|
|
return x_f |
|
363
|
|
|
|
|
364
|
|
|
def stopCond(self): |
|
365
|
|
|
r"""Check if stopping condition reached. |
|
366
|
|
|
|
|
367
|
|
|
Returns: |
|
368
|
|
|
bool: `True` if number of function evaluations or number of algorithm iterations/generations or reference values is reach else `False` |
|
369
|
|
|
|
|
370
|
|
|
""" |
|
371
|
|
|
|
|
372
|
|
|
return (self.Evals >= self.nFES) or (self.Iters >= self.nGEN) or (self.refValue > self.x_f) |
|
373
|
|
|
|
|
374
|
|
|
def stopCondI(self): |
|
375
|
|
|
r"""Check if stopping condition reached and increase number of iterations. |
|
376
|
|
|
|
|
377
|
|
|
Returns: |
|
378
|
|
|
bool: `True` if number of function evaluations or number of algorithm iterations/generations or reference values is reach else `False`. |
|
379
|
|
|
|
|
380
|
|
|
See Also: |
|
381
|
|
|
* :func:`NiaPy.util.StoppingTask.stopCond` |
|
382
|
|
|
* :func:`NiaPy.util.CountingTask.nextIter` |
|
383
|
|
|
|
|
384
|
|
|
""" |
|
385
|
|
|
|
|
386
|
|
|
r = self.stopCond() |
|
387
|
|
|
CountingTask.nextIter(self) |
|
388
|
|
|
return r |
|
389
|
|
|
|
|
390
|
|
|
def return_conv(self): |
|
391
|
|
|
r"""Get values of x and y axis for plotting covariance graph. |
|
392
|
|
|
|
|
393
|
|
|
Returns: |
|
394
|
|
|
Tuple[List[int], List[float]]: |
|
395
|
|
|
1. List of ints of function evaluations. |
|
396
|
|
|
2. List of ints of function/fitness values. |
|
397
|
|
|
|
|
398
|
|
|
""" |
|
399
|
|
|
return self.evals, self.x_f_vals |
|
400
|
|
|
|
|
401
|
|
|
|
|
402
|
|
|
class ThrowingTask(StoppingTask): |
|
403
|
|
|
r"""Task that throw exceptions when stopping condition is meet. |
|
404
|
|
|
|
|
405
|
|
|
See Also: |
|
406
|
|
|
* :class:`NiaPy.util.StoppingTask` |
|
407
|
|
|
|
|
408
|
|
|
""" |
|
409
|
|
|
|
|
410
|
|
|
def __init__(self, **kwargs): |
|
411
|
|
|
r"""Initialize optimization task. |
|
412
|
|
|
|
|
413
|
|
|
Args: |
|
414
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
|
415
|
|
|
|
|
416
|
|
|
See Also: |
|
417
|
|
|
* :func:`NiaPy.util.StoppingTask.__init__` |
|
418
|
|
|
|
|
419
|
|
|
""" |
|
420
|
|
|
|
|
421
|
|
|
StoppingTask.__init__(self, **kwargs) |
|
422
|
|
|
|
|
423
|
|
|
def stopCondE(self): |
|
424
|
|
|
r"""Throw exception for the given stopping condition. |
|
425
|
|
|
|
|
426
|
|
|
Raises: |
|
427
|
|
|
* FesException: Thrown when the number of function/fitness evaluations is reached. |
|
428
|
|
|
* GenException: Thrown when the number of algorithms generations/iterations is reached. |
|
429
|
|
|
* RefException: Thrown when the reference values is reached. |
|
430
|
|
|
* TimeException: Thrown when algorithm exceeds time run limit. |
|
431
|
|
|
|
|
432
|
|
|
""" |
|
433
|
|
|
|
|
434
|
|
|
# dtime = datetime.now() - self.startTime |
|
435
|
|
|
if self.Evals >= self.nFES: |
|
436
|
|
|
raise FesException() |
|
437
|
|
|
if self.Iters >= self.nGEN: |
|
438
|
|
|
raise GenException() |
|
439
|
|
|
# if self.runTime is not None and self.runTime >= dtime: raise TimeException() |
|
440
|
|
|
if self.refValue >= self.x_f: |
|
441
|
|
|
raise RefException() |
|
442
|
|
|
|
|
443
|
|
|
def eval(self, A): |
|
444
|
|
|
r"""Evaluate solution. |
|
445
|
|
|
|
|
446
|
|
|
Args: |
|
447
|
|
|
A (numpy.ndarray): Solution to evaluate. |
|
448
|
|
|
|
|
449
|
|
|
Returns: |
|
450
|
|
|
float: Function/fitness values of solution. |
|
451
|
|
|
|
|
452
|
|
|
See Also: |
|
453
|
|
|
* :func:`NiaPy.util.ThrowingTask.stopCondE` |
|
454
|
|
|
* :func:`NiaPy.util.StoppingTask.eval` |
|
455
|
|
|
|
|
456
|
|
|
""" |
|
457
|
|
|
|
|
458
|
|
|
self.stopCondE() |
|
459
|
|
|
return StoppingTask.eval(self, A) |
|
460
|
|
|
|
|
461
|
|
|
|
|
462
|
|
|
class MoveTask(StoppingTask): |
|
463
|
|
|
"""Move task implementation.""" |
|
464
|
|
|
|
|
465
|
|
|
def __init__(self, o=None, fo=None, M=None, fM=None, optF=None, **kwargs): |
|
466
|
|
|
r"""Initialize task class for optimization. |
|
467
|
|
|
|
|
468
|
|
|
Arguments: |
|
469
|
|
|
o (numpy.ndarray[Union[float, int]]): Array for shifting. |
|
470
|
|
|
of (Callable[numpy.ndarray[Union[float, int]]]): Function applied on shifted input. |
|
471
|
|
|
M (numpy.ndarray[Union[float, int]]): Matrix for rotating. |
|
472
|
|
|
fM (Callable[numpy.ndarray[Union[float, int]]]): Function applied after rotating. |
|
473
|
|
|
|
|
474
|
|
|
See Also: |
|
475
|
|
|
* :func:`NiaPy.util.StoppingTask.__init__` |
|
476
|
|
|
|
|
477
|
|
|
""" |
|
478
|
|
|
|
|
479
|
|
|
StoppingTask.__init__(self, **kwargs) |
|
480
|
|
|
self.o = o if isinstance(o, ndarray) or o is None else asarray(o) |
|
481
|
|
|
self.M = M if isinstance(M, ndarray) or M is None else asarray(M) |
|
482
|
|
|
self.fo, self.fM, self.optF = fo, fM, optF |
|
483
|
|
|
|
|
484
|
|
|
def eval(self, A): |
|
485
|
|
|
r"""Evaluate the solution. |
|
486
|
|
|
|
|
487
|
|
|
Args: |
|
488
|
|
|
A (numpy.ndarray): Solution to evaluate |
|
489
|
|
|
|
|
490
|
|
|
Returns: |
|
491
|
|
|
float: Fitness/function value of solution. |
|
492
|
|
|
|
|
493
|
|
|
See Also: |
|
494
|
|
|
* :func:`NiaPy.util.StoppingTask.stopCond` |
|
495
|
|
|
* :func:`NiaPy.util.StoppingTask.eval` |
|
496
|
|
|
|
|
497
|
|
|
""" |
|
498
|
|
|
|
|
499
|
|
|
if self.stopCond(): |
|
500
|
|
|
return inf * self.optType.value |
|
501
|
|
|
X = A - self.o if self.o is not None else A |
|
502
|
|
|
X = self.fo(X) if self.fo is not None else X |
|
503
|
|
|
X = dot(X, self.M) if self.M is not None else X |
|
504
|
|
|
X = self.fM(X) if self.fM is not None else X |
|
505
|
|
|
r = StoppingTask.eval(self, X) + (self.optF if self.optF is not None else 0) |
|
506
|
|
|
if r <= self.x_f: |
|
507
|
|
|
self.x, self.x_f = A, r |
|
508
|
|
|
return r |
|
509
|
|
|
|
|
510
|
|
|
|
|
511
|
|
|
class ScaledTask(Task): |
|
512
|
|
|
r"""Scaled task. |
|
513
|
|
|
|
|
514
|
|
|
Attributes: |
|
515
|
|
|
_task (Task): Optimization task with evaluation function. |
|
516
|
|
|
Lower (numpy.ndarray): Scaled lower limit of search space. |
|
517
|
|
|
Upper (numpy.ndarray): Scaled upper limit of search space. |
|
518
|
|
|
|
|
519
|
|
|
See Also: |
|
520
|
|
|
* :class:`NiaPy.util.Task` |
|
521
|
|
|
|
|
522
|
|
|
""" |
|
523
|
|
|
|
|
524
|
|
|
def __init__(self, task, Lower, Upper, **kwargs): |
|
525
|
|
|
r"""Initialize scaled task. |
|
526
|
|
|
|
|
527
|
|
|
Args: |
|
528
|
|
|
task (Task): Optimization task to scale to new bounds. |
|
529
|
|
|
Lower (Union[float, int, numpy.ndarray]): New lower bounds. |
|
530
|
|
|
Upper (Union[float, int, numpy.ndarray]): New upper bounds. |
|
531
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
|
532
|
|
|
|
|
533
|
|
|
See Also: |
|
534
|
|
|
* :func:`NiaPy.util.fullArray` |
|
535
|
|
|
|
|
536
|
|
|
""" |
|
537
|
|
|
|
|
538
|
|
|
Task.__init__(self) |
|
539
|
|
|
self._task = task |
|
540
|
|
|
self.D = self._task.D |
|
541
|
|
|
self.Lower, self.Upper = fullArray(Lower, self.D), fullArray(Upper, self.D) |
|
542
|
|
|
self.bRange = fabs(Upper - Lower) |
|
543
|
|
|
|
|
544
|
|
|
def stopCond(self): |
|
545
|
|
|
r"""Test for stopping condition. |
|
546
|
|
|
|
|
547
|
|
|
This function uses `self._task` for checking the stopping criteria. |
|
548
|
|
|
|
|
549
|
|
|
Returns: |
|
550
|
|
|
bool: `True` if stopping condition is meet else `False`. |
|
551
|
|
|
|
|
552
|
|
|
""" |
|
553
|
|
|
|
|
554
|
|
|
return self._task.stopCond() |
|
555
|
|
|
|
|
556
|
|
|
def stopCondI(self): |
|
557
|
|
|
r"""Test for stopping condition and increments the number of algorithm generations/iterations. |
|
558
|
|
|
|
|
559
|
|
|
This function uses `self._task` for checking the stopping criteria. |
|
560
|
|
|
|
|
561
|
|
|
Returns: |
|
562
|
|
|
bool: `True` if stopping condition is meet else `False`. |
|
563
|
|
|
|
|
564
|
|
|
""" |
|
565
|
|
|
|
|
566
|
|
|
return self._task.stopCondI() |
|
567
|
|
|
|
|
568
|
|
|
def eval(self, A): |
|
569
|
|
|
r"""Evaluate solution. |
|
570
|
|
|
|
|
571
|
|
|
Args: |
|
572
|
|
|
A (numpy.ndarray): Solution for calculating function/fitness value. |
|
573
|
|
|
|
|
574
|
|
|
Returns: |
|
575
|
|
|
float: Function values of solution. |
|
576
|
|
|
|
|
577
|
|
|
""" |
|
578
|
|
|
|
|
579
|
|
|
return self._task.eval(A) |
|
580
|
|
|
|
|
581
|
|
|
def evals(self): |
|
582
|
|
|
r"""Get the number of function evaluations. |
|
583
|
|
|
|
|
584
|
|
|
Returns: |
|
585
|
|
|
int: Number of function evaluations. |
|
586
|
|
|
|
|
587
|
|
|
""" |
|
588
|
|
|
|
|
589
|
|
|
return self._task.evals() |
|
590
|
|
|
|
|
591
|
|
|
def iters(self): |
|
592
|
|
|
r"""Get the number of algorithms generations/iterations. |
|
593
|
|
|
|
|
594
|
|
|
Returns: |
|
595
|
|
|
int: Number of algorithms generations/iterations. |
|
596
|
|
|
|
|
597
|
|
|
""" |
|
598
|
|
|
|
|
599
|
|
|
return self._task.iters() |
|
600
|
|
|
|
|
601
|
|
|
def nextIter(self): |
|
602
|
|
|
r"""Increment the number of iterations/generations. |
|
603
|
|
|
|
|
604
|
|
|
Function uses `self._task` to increment number of generations/iterations. |
|
605
|
|
|
|
|
606
|
|
|
""" |
|
607
|
|
|
|
|
608
|
|
|
self._task.nextIter() |
|
609
|
|
|
|
|
610
|
|
|
|
|
611
|
|
|
class TaskConvPlot(): |
|
612
|
|
|
r"""Task class with ability of showing convergence graph. |
|
613
|
|
|
|
|
614
|
|
|
Attributes: |
|
615
|
|
|
iters (List[int]): List of ints representing when the new global best was found. |
|
616
|
|
|
x_fs (List[float]): List of floats representing function/fitness values found. |
|
617
|
|
|
|
|
618
|
|
|
See Also: |
|
619
|
|
|
* :class:`NiaPy.util.StoppingTask` |
|
620
|
|
|
|
|
621
|
|
|
""" |
|
622
|
|
|
|
|
623
|
|
|
def __init__(self, **kwargs): |
|
624
|
|
|
r"""TODO. |
|
625
|
|
|
|
|
626
|
|
|
Args: |
|
627
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
|
628
|
|
|
|
|
629
|
|
|
See Also: |
|
630
|
|
|
* :func:`NiaPy.util.StoppingTask.__init__` |
|
631
|
|
|
|
|
632
|
|
|
""" |
|
633
|
|
|
|
|
634
|
|
|
StoppingTask.__init__(self, **kwargs) |
|
635
|
|
|
self.fig = plt.figure() |
|
636
|
|
|
self.ax = self.fig.subplots(nrows=1, ncols=1) |
|
637
|
|
|
self.ax.set_xlim(0, self.nFES) |
|
638
|
|
|
self.line, = self.ax.plot(self.iters, self.x_fs, animated=True) |
|
639
|
|
|
self.ani = anim.FuncAnimation(self.fig, self.updatePlot, blit=True) |
|
640
|
|
|
self.showPlot() |
|
641
|
|
|
|
|
642
|
|
|
def eval(self, A): |
|
643
|
|
|
r"""Evaluate solution. |
|
644
|
|
|
|
|
645
|
|
|
Args: |
|
646
|
|
|
A (numpy.ndarray): Solution to evaluate. |
|
647
|
|
|
|
|
648
|
|
|
Returns: |
|
649
|
|
|
float: Fitness/function values of solution. |
|
650
|
|
|
|
|
651
|
|
|
""" |
|
652
|
|
|
|
|
653
|
|
|
x_f = StoppingTask.eval(self, A) |
|
654
|
|
|
if not self.x_f_vals: |
|
655
|
|
|
self.x_f_vals.append(x_f) |
|
656
|
|
|
elif x_f < self.x_f_vals[-1]: |
|
657
|
|
|
self.x_f_vals.append(x_f) |
|
658
|
|
|
else: |
|
659
|
|
|
self.x_f_vals.append(self.x_f_vals[-1]) |
|
660
|
|
|
self.evals.append(self.Evals) |
|
661
|
|
|
return x_f |
|
662
|
|
|
|
|
663
|
|
|
def showPlot(self): |
|
664
|
|
|
r"""Animation updating function.""" |
|
665
|
|
|
plt.show(block=False) |
|
666
|
|
|
plt.pause(0.001) |
|
667
|
|
|
|
|
668
|
|
|
def updatePlot(self, frame): |
|
669
|
|
|
r"""Update mathplotlib figure. |
|
670
|
|
|
|
|
671
|
|
|
Args: |
|
672
|
|
|
frame (): TODO |
|
673
|
|
|
|
|
674
|
|
|
Returns: |
|
675
|
|
|
Tuple[List[float], Any]: |
|
676
|
|
|
1. Line |
|
677
|
|
|
|
|
678
|
|
|
""" |
|
679
|
|
|
|
|
680
|
|
|
if self.x_f_vals: |
|
681
|
|
|
max_fs, min_fs = self.x_f_vals[0], self.x_f_vals[-1] |
|
682
|
|
|
self.ax.set_ylim(min_fs + 1, max_fs + 1) |
|
683
|
|
|
self.line.set_data(self.evals, self.x_f_vals) |
|
684
|
|
|
return self.line, |
|
685
|
|
|
|
|
686
|
|
|
|
|
687
|
|
|
class TaskComposition(MoveTask): |
|
688
|
|
|
"""Task compostion.""" |
|
689
|
|
|
|
|
690
|
|
|
def __init__(self, benchmarks=None, rho=None, lamb=None, bias=None, **kwargs): |
|
691
|
|
|
r"""Initialize of composite function problem. |
|
692
|
|
|
|
|
693
|
|
|
Arguments: |
|
694
|
|
|
benchmarks (List[Benchmark]): Optimization function to use in composition |
|
695
|
|
|
delta (numpy.ndarray[float]): TODO |
|
696
|
|
|
lamb (numpy.ndarray[float]): TODO |
|
697
|
|
|
bias (numpy.ndarray[float]): TODO |
|
698
|
|
|
|
|
699
|
|
|
See Also: |
|
700
|
|
|
* :func:`NiaPy.util.MoveTask.__init__` |
|
701
|
|
|
|
|
702
|
|
|
TODO: |
|
703
|
|
|
Class is a work in progress. |
|
704
|
|
|
|
|
705
|
|
|
""" |
|
706
|
|
|
|
|
707
|
|
|
MoveTask.__init__(self, **kwargs) |
|
708
|
|
|
|
|
709
|
|
|
def eval(self, A): |
|
710
|
|
|
r"""TODO. |
|
711
|
|
|
|
|
712
|
|
|
Args: |
|
713
|
|
|
A: |
|
714
|
|
|
|
|
715
|
|
|
Returns: |
|
716
|
|
|
float: |
|
717
|
|
|
|
|
718
|
|
|
Todo: |
|
719
|
|
|
Usage of multiple functions on the same time |
|
720
|
|
|
|
|
721
|
|
|
""" |
|
722
|
|
|
|
|
723
|
|
|
return inf |
|
724
|
|
|
|