1
|
|
|
# encoding=utf8 |
2
|
|
|
# pylint: disable=mixed-indentation, trailing-whitespace, line-too-long, multiple-statements, attribute-defined-outside-init, logging-not-lazy, no-self-use, redefined-builtin, singleton-comparison, unused-argument, arguments-differ, no-else-return, bad-continuation |
3
|
|
|
import logging |
4
|
|
|
|
5
|
|
|
from scipy.spatial.distance import euclidean |
6
|
|
|
from numpy import full, apply_along_axis, copy, sum, fmax, pi, where |
7
|
|
|
|
8
|
|
|
from NiaPy.algorithms.algorithm import Algorithm |
9
|
|
|
|
10
|
|
|
logging.basicConfig() |
11
|
|
|
logger = logging.getLogger('NiaPy.algorithms.basic') |
12
|
|
|
logger.setLevel('INFO') |
13
|
|
|
|
14
|
|
|
__all__ = ['GlowwormSwarmOptimization', 'GlowwormSwarmOptimizationV1', 'GlowwormSwarmOptimizationV2', 'GlowwormSwarmOptimizationV3'] |
15
|
|
|
|
16
|
|
|
class GlowwormSwarmOptimization(Algorithm): |
17
|
|
|
r"""Implementation of glowwarm swarm optimization. |
18
|
|
|
|
19
|
|
|
Algorithm: |
20
|
|
|
Glowwarm Swarm Optimization Algorithm |
21
|
|
|
|
22
|
|
|
Date: |
23
|
|
|
2018 |
24
|
|
|
|
25
|
|
|
Authors: |
26
|
|
|
Klemen Berkovič |
27
|
|
|
|
28
|
|
|
License: |
29
|
|
|
MIT |
30
|
|
|
|
31
|
|
|
Reference URL: |
32
|
|
|
https://www.springer.com/gp/book/9783319515946 |
33
|
|
|
|
34
|
|
|
Reference paper: |
35
|
|
|
Kaipa, Krishnanand N., and Debasish Ghose. Glowworm swarm optimization: theory, algorithms, and applications. Vol. 698. Springer, 2017. |
36
|
|
|
|
37
|
|
|
Attributes: |
38
|
|
|
Name (List[str]): List of strings represeinting algorithm name. |
39
|
|
|
n (int): Number of glowworms in population. |
40
|
|
|
l0 (float): Initial luciferin quantity for each glowworm. |
41
|
|
|
nt (float): -- |
42
|
|
|
rs (float): Maximum sensing range. |
43
|
|
|
rho (float): Luciferin decay constant. |
44
|
|
|
gamma (float): Luciferin enhancement constant. |
45
|
|
|
beta (float): -- |
46
|
|
|
s (float): -- |
47
|
|
|
Distance (Callable[[numpy.ndarray, numpy.ndarray], float]]): Measure distance between two individuals. |
48
|
|
|
|
49
|
|
|
See Also: |
50
|
|
|
* :class:`NiaPy.algorithms.algorithm.Algorithm` |
51
|
|
|
""" |
52
|
|
|
Name = ['GlowwormSwarmOptimization', 'GSO'] |
53
|
|
|
|
54
|
|
|
@staticmethod |
55
|
|
|
def typeParameters(): |
56
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
57
|
|
|
|
58
|
|
|
Returns: |
59
|
|
|
Dict[str, Callable]: |
60
|
|
|
* n (Callable[[int], bool]): TODO |
61
|
|
|
* l0 (Callable[[Union[float, int]], bool]): TODO |
62
|
|
|
* nt (Callable[[Union[float, int]], bool]): TODO |
63
|
|
|
* rho (Callable[[Union[float, int]], bool]): TODO |
64
|
|
|
* gamma (Callable[[float], bool]): TODO |
65
|
|
|
* beta (Callable[[float], bool]): TODO |
66
|
|
|
* s (Callable[[float], bool]): TODO |
67
|
|
|
""" |
68
|
|
|
return { |
69
|
|
|
'n': lambda x: isinstance(x, int) and x > 0, |
70
|
|
|
'l0': lambda x: isinstance(x, (float, int)) and x > 0, |
71
|
|
|
'nt': lambda x: isinstance(x, (float, int)) and x > 0, |
72
|
|
|
'rho': lambda x: isinstance(x, float) and 0 < x < 1, |
73
|
|
|
'gamma': lambda x: isinstance(x, float) and 0 < x < 1, |
74
|
|
|
'beta': lambda x: isinstance(x, float) and x > 0, |
75
|
|
|
's': lambda x: isinstance(x, float) and x > 0 |
76
|
|
|
} |
77
|
|
|
|
78
|
|
|
def setParameters(self, n=25, l0=5, nt=5, rho=0.4, gamma=0.6, beta=0.08, s=0.03, Distance=euclidean, **ukwargs): |
79
|
|
|
r"""Set the arguments of an algorithm. |
80
|
|
|
|
81
|
|
|
Arguments: |
82
|
|
|
n (Optional[int]): Number of glowworms in population. |
83
|
|
|
l0 (Optional[float]): Initial luciferin quantity for each glowworm. |
84
|
|
|
nt (Optional[float]): -- |
85
|
|
|
rs (Optional]float]): Maximum sensing range. |
86
|
|
|
rho (Optional[float]): Luciferin decay constant. |
87
|
|
|
gamma (Optional[float]): Luciferin enhancement constant. |
88
|
|
|
beta (Optional[float]): -- |
89
|
|
|
s (Optional[float]): -- |
90
|
|
|
Distance (Optional[Callable[[numpy.ndarray, numpy.ndarray], float]]]): Measure distance between two individuals. |
91
|
|
|
""" |
92
|
|
|
self.n, self.l0, self.nt, self.rho, self.gamma, self.beta, self.s, self.Distance = n, l0, nt, rho, gamma, beta, s, Distance |
93
|
|
|
if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) |
94
|
|
|
|
95
|
|
|
def randMove(self, i): |
96
|
|
|
r"""Move a glowworm to another glowworm. |
97
|
|
|
|
98
|
|
|
Args: |
99
|
|
|
i (int): Index of glowworm that is making a move. |
100
|
|
|
|
101
|
|
|
Returns: |
102
|
|
|
int: Index of glowworm to move to. |
103
|
|
|
""" |
104
|
|
|
j = i |
105
|
|
|
while i == j: j = self.randint(self.n) |
106
|
|
|
return j |
107
|
|
|
|
108
|
|
|
def getNeighbors(self, i, r, GS, L): |
109
|
|
|
r"""Get neighbours of glowworm. |
110
|
|
|
|
111
|
|
|
Args: |
112
|
|
|
i (int): Index of glowworm. |
113
|
|
|
r (float): Neighborhood distance. |
114
|
|
|
GS (numpy.ndarray): |
115
|
|
|
L (numpy.ndarray[float]): Luciferin value of glowworm. |
116
|
|
|
|
117
|
|
|
Returns: |
118
|
|
|
numpy.ndarray[int]: Indexes of neighborhood glowworms. |
119
|
|
|
""" |
120
|
|
|
N = full(self.n, 0) |
121
|
|
|
for j, gw in enumerate(GS): N[j] = 1 if i != j and self.Distance(GS[i], gw) <= r and L[i] >= L[j] else 0 |
122
|
|
|
return N |
123
|
|
|
|
124
|
|
|
def probabilityes(self, i, N, L): |
125
|
|
|
r"""TODO. |
126
|
|
|
|
127
|
|
|
Args: |
128
|
|
|
i: |
129
|
|
|
N: |
130
|
|
|
L: |
131
|
|
|
|
132
|
|
|
Returns: |
133
|
|
|
|
134
|
|
|
""" |
135
|
|
|
d, P = sum(L[where(N == 1)] - L[i]), full(self.n, .0) |
136
|
|
|
for j in range(self.n): P[i] = ((L[j] - L[i]) / d) if N[j] == 1 else 0 |
137
|
|
|
return P |
138
|
|
|
|
139
|
|
|
def moveSelect(self, pb, i): |
140
|
|
|
r"""TODO. |
141
|
|
|
|
142
|
|
|
Args: |
143
|
|
|
pb: |
144
|
|
|
i: |
145
|
|
|
|
146
|
|
|
Returns: |
147
|
|
|
|
148
|
|
|
""" |
149
|
|
|
r, b_l, b_u = self.rand(), 0, 0 |
150
|
|
|
for j in range(self.n): |
151
|
|
|
b_l, b_u = b_u, b_u + pb[i] |
152
|
|
|
if b_l < r < b_u: return j |
153
|
|
|
return self.randint(self.n) |
154
|
|
|
|
155
|
|
|
def calcLuciferin(self, L, GS_f): |
156
|
|
|
r"""TODO. |
157
|
|
|
|
158
|
|
|
Args: |
159
|
|
|
L: |
160
|
|
|
GS_f: |
161
|
|
|
|
162
|
|
|
Returns: |
163
|
|
|
|
164
|
|
|
""" |
165
|
|
|
return (1 - self.rho) * L + self.gamma * GS_f |
166
|
|
|
|
167
|
|
|
def rangeUpdate(self, R, N, rs): |
168
|
|
|
r"""TODO. |
169
|
|
|
|
170
|
|
|
Args: |
171
|
|
|
R: |
172
|
|
|
N: |
173
|
|
|
rs: |
174
|
|
|
|
175
|
|
|
Returns: |
176
|
|
|
|
177
|
|
|
""" |
178
|
|
|
return R + self.beta * (self.nt - sum(N)) |
179
|
|
|
|
180
|
|
|
def initPopulation(self, task): |
181
|
|
|
r"""Initialize population. |
182
|
|
|
|
183
|
|
|
Args: |
184
|
|
|
task (Task): Optimization task. |
185
|
|
|
|
186
|
|
|
Returns: |
187
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
188
|
|
|
1. Initialized population of glowwarms. |
189
|
|
|
2. Initialized populations function/fitness values. |
190
|
|
|
3. Additional arguments: |
191
|
|
|
* L (numpy.ndarray): TODO. |
192
|
|
|
* R (numpy.ndarray): TODO. |
193
|
|
|
* rs (numpy.ndarray): TODO. |
194
|
|
|
""" |
195
|
|
|
rs = euclidean(full(task.D, 0), task.bRange) |
196
|
|
|
GS, L, R = self.uniform(task.Lower, task.Upper, [self.n, task.D]), full(self.n, self.l0), full(self.n, rs) |
197
|
|
|
GS_f = apply_along_axis(task.eval, 1, GS) |
198
|
|
|
return GS, GS_f, {'L': L, 'R': R, 'rs': rs} |
199
|
|
|
|
200
|
|
|
def runIteration(self, task, GS, GS_f, xb, fxb, L, R, rs, **dparams): |
201
|
|
|
r"""Core function of GlowwormSwarmOptimization algorithm. |
202
|
|
|
|
203
|
|
|
Args: |
204
|
|
|
task (Task): Optimization taks. |
205
|
|
|
GS (numpy.ndarray): Current population. |
206
|
|
|
GS_f (numpy.ndarray[float]): Current populations fitness/function values. |
207
|
|
|
xb (numpy.ndarray): Global best individual. |
208
|
|
|
fxb (float): Global best individuals function/fitness value. |
209
|
|
|
L (numpy.ndarray): |
210
|
|
|
R (numpy.ndarray): |
211
|
|
|
rs (numpy.ndarray): |
212
|
|
|
**dparams Dict[str, Any]: Additional arguments. |
213
|
|
|
|
214
|
|
|
Returns: |
215
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
216
|
|
|
1. Initialized population of glowwarms. |
217
|
|
|
2. Initialized populations function/fitness values. |
218
|
|
|
3. Additional arguments: |
219
|
|
|
* L (numpy.ndarray): TODO. |
220
|
|
|
* R (numpy.ndarray): TODO. |
221
|
|
|
* rs (numpy.ndarray): TODO. |
222
|
|
|
""" |
223
|
|
|
GSo, Ro = copy(GS), copy(R) |
224
|
|
|
L = self.calcLuciferin(L, GS_f) |
225
|
|
|
N = [self.getNeighbors(i, Ro[i], GSo, L) for i in range(self.n)] |
226
|
|
|
P = [self.probabilityes(i, N[i], L) for i in range(self.n)] |
227
|
|
|
j = [self.moveSelect(P[i], i) for i in range(self.n)] |
228
|
|
|
for i in range(self.n): GS[i] = task.repair(GSo[i] + self.s * ((GSo[j[i]] - GSo[i]) / (self.Distance(GSo[j[i]], GSo[i]) + 1e-31)), rnd=self.Rand) |
229
|
|
|
for i in range(self.n): R[i] = max(0, min(rs, self.rangeUpdate(Ro[i], N[i], rs))) |
230
|
|
|
GS_f = apply_along_axis(task.eval, 1, GS) |
231
|
|
|
return GS, GS_f, {'L': L, 'R': R, 'rs': rs} |
232
|
|
|
|
233
|
|
|
class GlowwormSwarmOptimizationV1(GlowwormSwarmOptimization): |
234
|
|
|
r"""Implementation of glowwarm swarm optimization. |
235
|
|
|
|
236
|
|
|
Algorithm: |
237
|
|
|
Glowwarm Swarm Optimization Algorithm |
238
|
|
|
|
239
|
|
|
Date: |
240
|
|
|
2018 |
241
|
|
|
|
242
|
|
|
Authors: |
243
|
|
|
Klemen Berkovič |
244
|
|
|
|
245
|
|
|
License: |
246
|
|
|
MIT |
247
|
|
|
|
248
|
|
|
Reference URL: |
249
|
|
|
https://www.springer.com/gp/book/9783319515946 |
250
|
|
|
|
251
|
|
|
Reference paper: |
252
|
|
|
Kaipa, Krishnanand N., and Debasish Ghose. Glowworm swarm optimization: theory, algorithms, and applications. Vol. 698. Springer, 2017. |
253
|
|
|
|
254
|
|
|
Attributes: |
255
|
|
|
Name (list of str): TODO |
256
|
|
|
""" |
257
|
|
|
Name = ['GlowwormSwarmOptimizationV1', 'GSOv1'] |
258
|
|
|
|
259
|
|
|
def setParameters(self, **kwargs): |
260
|
|
|
self.__setParams(**kwargs) |
261
|
|
|
GlowwormSwarmOptimization.setParameters(self, **kwargs) |
262
|
|
|
|
263
|
|
|
def __setParams(self, alpha=0.2, **ukwargs): |
264
|
|
|
r"""Set the arguments of an algorithm. |
265
|
|
|
|
266
|
|
|
Arguments: |
267
|
|
|
alpha (float): -- |
268
|
|
|
""" |
269
|
|
|
self.alpha = alpha |
270
|
|
|
if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) |
271
|
|
|
|
272
|
|
|
def calcLuciferin(self, L, GS_f): |
273
|
|
|
r"""TODO. |
274
|
|
|
|
275
|
|
|
Args: |
276
|
|
|
L: |
277
|
|
|
GS_f: |
278
|
|
|
|
279
|
|
|
Returns: |
280
|
|
|
|
281
|
|
|
""" |
282
|
|
|
return fmax(0, (1 - self.rho) * L + self.gamma * GS_f) |
283
|
|
|
|
284
|
|
|
def rangeUpdate(self, R, N, rs): |
285
|
|
|
r"""TODO. |
286
|
|
|
|
287
|
|
|
Args: |
288
|
|
|
R: |
289
|
|
|
N: |
290
|
|
|
rs: |
291
|
|
|
|
292
|
|
|
Returns: |
293
|
|
|
|
294
|
|
|
""" |
295
|
|
|
return rs / (1 + self.beta * (sum(N) / (pi * rs ** 2))) |
296
|
|
|
|
297
|
|
|
class GlowwormSwarmOptimizationV2(GlowwormSwarmOptimization): |
298
|
|
|
r"""Implementation of glowwarm swarm optimization. |
299
|
|
|
|
300
|
|
|
Algorithm: |
301
|
|
|
Glowwarm Swarm Optimization Algorithm |
302
|
|
|
|
303
|
|
|
Date: |
304
|
|
|
2018 |
305
|
|
|
|
306
|
|
|
Authors: |
307
|
|
|
Klemen Berkovič |
308
|
|
|
|
309
|
|
|
License: |
310
|
|
|
MIT |
311
|
|
|
|
312
|
|
|
Reference URL: |
313
|
|
|
https://www.springer.com/gp/book/9783319515946 |
314
|
|
|
|
315
|
|
|
Reference paper: |
316
|
|
|
Kaipa, Krishnanand N., and Debasish Ghose. Glowworm swarm optimization: theory, algorithms, and applications. Vol. 698. Springer, 2017. |
317
|
|
|
|
318
|
|
|
Attributes: |
319
|
|
|
Name (list or str): TODO |
320
|
|
|
""" |
321
|
|
|
Name = ['GlowwormSwarmOptimizationV2', 'GSOv2'] |
322
|
|
|
|
323
|
|
|
def setParameters(self, **kwargs): |
324
|
|
|
self.__setParams(alpha=kwargs.pop('alpha', 0.2), **kwargs) |
325
|
|
|
GlowwormSwarmOptimization.setParameters(self, **kwargs) |
326
|
|
|
|
327
|
|
|
def __setParams(self, alpha=0.2, **ukwargs): |
328
|
|
|
r"""Set the arguments of an algorithm. |
329
|
|
|
|
330
|
|
|
**Arguments:** |
331
|
|
|
|
332
|
|
|
beta1 {real} -- |
333
|
|
|
|
334
|
|
|
s {real} -- |
335
|
|
|
""" |
336
|
|
|
self.alpha = alpha |
337
|
|
|
if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) |
338
|
|
|
|
339
|
|
|
def rangeUpdate(self, P, N, rs): |
340
|
|
|
r"""TODO. |
341
|
|
|
|
342
|
|
|
Args: |
343
|
|
|
P: |
344
|
|
|
N: |
345
|
|
|
rs: |
346
|
|
|
|
347
|
|
|
Returns: |
348
|
|
|
|
349
|
|
|
""" |
350
|
|
|
return self.alpha + (rs - self.alpha) / (1 + self.beta * sum(N)) |
351
|
|
|
|
352
|
|
|
class GlowwormSwarmOptimizationV3(GlowwormSwarmOptimization): |
353
|
|
|
r"""Implementation of glowwarm swarm optimization. |
354
|
|
|
|
355
|
|
|
Algorithm: |
356
|
|
|
Glowwarm Swarm Optimization Algorithm |
357
|
|
|
|
358
|
|
|
Date: |
359
|
|
|
2018 |
360
|
|
|
|
361
|
|
|
Authors: |
362
|
|
|
Klemen Berkovič |
363
|
|
|
|
364
|
|
|
License: |
365
|
|
|
MIT |
366
|
|
|
|
367
|
|
|
Reference URL: |
368
|
|
|
https://www.springer.com/gp/book/9783319515946 |
369
|
|
|
|
370
|
|
|
Reference paper: |
371
|
|
|
Kaipa, Krishnanand N., and Debasish Ghose. Glowworm swarm optimization: theory, algorithms, and applications. Vol. 698. Springer, 2017. |
372
|
|
|
|
373
|
|
|
Attributes: |
374
|
|
|
Name (list of str): TODO |
375
|
|
|
""" |
376
|
|
|
Name = ['GlowwormSwarmOptimizationV3', 'GSOv3'] |
377
|
|
|
|
378
|
|
|
def setParameters(self, **kwargs): |
379
|
|
|
self.__setParams(beta1=kwargs.pop('beta1', 0.2), **kwargs) |
380
|
|
|
GlowwormSwarmOptimization.setParameters(self, **kwargs) |
381
|
|
|
|
382
|
|
|
def __setParams(self, beta1=0.2, **ukwargs): |
383
|
|
|
r"""Set the arguments of an algorithm. |
384
|
|
|
|
385
|
|
|
**Arguments:** |
386
|
|
|
|
387
|
|
|
beta1 {real} -- |
388
|
|
|
|
389
|
|
|
s {real} -- |
390
|
|
|
""" |
391
|
|
|
self.beta1 = beta1 |
392
|
|
|
if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) |
393
|
|
|
|
394
|
|
|
def rangeUpdate(self, R, N, rs): |
395
|
|
|
r"""TODO. |
396
|
|
|
|
397
|
|
|
Args: |
398
|
|
|
R: |
399
|
|
|
N: |
400
|
|
|
rs: |
401
|
|
|
|
402
|
|
|
Returns: |
403
|
|
|
|
404
|
|
|
""" |
405
|
|
|
return R + (self.beta * sum(N)) if sum(N) < self.nt else (-self.beta1 * sum(N)) |
406
|
|
|
|
407
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
408
|
|
|
|