1
|
|
|
# encoding=utf8 |
2
|
|
|
# pylint: disable=mixed-indentation, multiple-statements, line-too-long, unused-argument, no-self-use, no-self-use, attribute-defined-outside-init, logging-not-lazy, len-as-condition, singleton-comparison, arguments-differ, bad-continuation, dangerous-default-value, keyword-arg-before-vararg |
3
|
|
|
import logging |
4
|
|
|
from numpy import random as rand, argmin, argmax, mean, cos, asarray, append |
5
|
|
|
from scipy.spatial.distance import euclidean |
6
|
|
|
|
7
|
|
|
from NiaPy.algorithms.algorithm import Algorithm, Individual, defaultIndividualInit |
8
|
|
|
from NiaPy.util.utility import objects2array |
9
|
|
|
|
10
|
|
|
__all__ = ['DifferentialEvolution', 'DynNpDifferentialEvolution', 'AgingNpDifferentialEvolution', 'CrowdingDifferentialEvolution', 'MultiStrategyDifferentialEvolution', 'DynNpMultiStrategyDifferentialEvolution', 'AgingNpMultiMutationDifferentialEvolution', 'AgingIndividual', 'CrossRand1', 'CrossBest2', 'CrossBest1', 'CrossBest2', 'CrossCurr2Rand1', 'CrossCurr2Best1', 'multiMutations'] |
11
|
|
|
|
12
|
|
|
logging.basicConfig() |
13
|
|
|
logger = logging.getLogger('NiaPy.algorithms.basic') |
14
|
|
|
logger.setLevel('INFO') |
15
|
|
|
|
16
|
|
View Code Duplication |
def CrossRand1(pop, ic, x_b, f, cr, rnd=rand, *args): |
|
|
|
|
17
|
|
|
r"""Mutation strategy with crossover. |
18
|
|
|
|
19
|
|
|
Mutation strategy uses three different random individuals from population to perform mutation. |
20
|
|
|
|
21
|
|
|
Mutation: |
22
|
|
|
Name: DE/rand/1 |
23
|
|
|
|
24
|
|
|
:math:`\mathbf{x}_{r_1, G} + F \cdot (\mathbf{x}_{r_2, G} - \mathbf{x}_{r_3, G}` |
25
|
|
|
where :math:`r_1, r_2, r_3` are random indexes representing current population individuals. |
26
|
|
|
|
27
|
|
|
Crossover: |
28
|
|
|
Name: Binomial crossover |
29
|
|
|
|
30
|
|
|
:math:`\mathbf{x}_{i, G+1} = \begin{cases} \mathbf{u}_{i, G+1}, & \text{if $f(\mathbf{u}_{i, G+1}) \leq f(\mathbf{x}_{i, G})$}, \\ \mathbf{x}_{i, G}, & \text{otherwise}. \end{cases}` |
31
|
|
|
|
32
|
|
|
Args: |
33
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
34
|
|
|
ic (int): Index of individual being mutated. |
35
|
|
|
x_b (Individual): Current global best individual. |
36
|
|
|
f (float): Scale factor. |
37
|
|
|
cr (float): Crossover probability. |
38
|
|
|
rnd (mtrand.RandomState): Random generator. |
39
|
|
|
*args (list): Additional arguments. |
40
|
|
|
|
41
|
|
|
Returns: |
42
|
|
|
numpy.ndarray: Mutated and mixed individual. |
43
|
|
|
""" |
44
|
|
|
j = rnd.randint(len(pop[ic])) |
45
|
|
|
p = [1 / (len(pop) - 1.0) if i != ic else 0 for i in range(len(pop))] if len(pop) > 3 else None |
46
|
|
|
r = rnd.choice(len(pop), 3, replace=not len(pop) >= 3, p=p) |
47
|
|
|
x = [pop[r[0]][i] + f * (pop[r[1]][i] - pop[r[2]][i]) if rnd.rand() < cr or i == j else pop[ic][i] for i in range(len(pop[ic]))] |
48
|
|
|
return asarray(x) |
49
|
|
|
|
50
|
|
View Code Duplication |
def CrossBest1(pop, ic, x_b, f, cr, rnd=rand, *args): |
|
|
|
|
51
|
|
|
r"""Mutation strategy with crossover. |
52
|
|
|
|
53
|
|
|
Mutation strategy uses two different random individuals from population and global best individual. |
54
|
|
|
|
55
|
|
|
Mutation: |
56
|
|
|
Name: de/best/1 |
57
|
|
|
|
58
|
|
|
:math:`\mathbf{v}_{i, G} = \mathbf{x}_{best, G} + F \cdot (\mathbf{x}_{r_1, G} - \mathbf{x}_{r_2, G})` |
59
|
|
|
where :math:`r_1, r_2` are random indexes representing current population individuals. |
60
|
|
|
|
61
|
|
|
Crossover: |
62
|
|
|
Name: Binomial crossover |
63
|
|
|
|
64
|
|
|
:math:`\mathbf{x}_{i, G+1} = \begin{cases} \mathbf{u}_{i, G+1}, & \text{if $f(\mathbf{u}_{i, G+1}) \leq f(\mathbf{x}_{i, G})$}, \\ \mathbf{x}_{i, G}, & \text{otherwise}. \end{cases}` |
65
|
|
|
|
66
|
|
|
args: |
67
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
68
|
|
|
ic (int): Index of individual being mutated. |
69
|
|
|
x_b (Individual): Current global best individual. |
70
|
|
|
f (float): Scale factor. |
71
|
|
|
cr (float): Crossover probability. |
72
|
|
|
rnd (mtrand.RandomState): Random generator. |
73
|
|
|
*args (list): Additional arguments. |
74
|
|
|
|
75
|
|
|
returns: |
76
|
|
|
numpy.ndarray: Mutated and mixed individual. |
77
|
|
|
""" |
78
|
|
|
j = rnd.randint(len(pop[ic])) |
79
|
|
|
p = [1 / (len(pop) - 1.0) if i != ic else 0 for i in range(len(pop))] if len(pop) > 2 else None |
80
|
|
|
r = rnd.choice(len(pop), 2, replace=not len(pop) >= 2, p=p) |
81
|
|
|
x = [x_b[i] + f * (pop[r[0]][i] - pop[r[1]][i]) if rnd.rand() < cr or i == j else pop[ic][i] for i in range(len(pop[ic]))] |
82
|
|
|
return asarray(x) |
83
|
|
|
|
84
|
|
View Code Duplication |
def CrossRand2(pop, ic, x_b, f, cr, rnd=rand, *args): |
|
|
|
|
85
|
|
|
r"""Mutation strategy with crossover. |
86
|
|
|
|
87
|
|
|
Mutation strategy uses five different random individuals from population. |
88
|
|
|
|
89
|
|
|
Mutation: |
90
|
|
|
Name: de/best/1 |
91
|
|
|
|
92
|
|
|
:math:`\mathbf{v}_{i, G} = \mathbf{x}_{r_1, G} + F \cdot (\mathbf{x}_{r_2, G} - \mathbf{x}_{r_3, G}) + F \cdot (\mathbf{x}_{r_4, G} - \mathbf{x}_{r_5, G})` |
93
|
|
|
where :math:`r_1, r_2, r_3, r_4, r_5` are random indexes representing current population individuals. |
94
|
|
|
|
95
|
|
|
Crossover: |
96
|
|
|
Name: Binomial crossover |
97
|
|
|
|
98
|
|
|
:math:`\mathbf{x}_{i, G+1} = \begin{cases} \mathbf{u}_{i, G+1}, & \text{if $f(\mathbf{u}_{i, G+1}) \leq f(\mathbf{x}_{i, G})$}, \\ \mathbf{x}_{i, G}, & \text{otherwise}. \end{cases}` |
99
|
|
|
|
100
|
|
|
Args: |
101
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
102
|
|
|
ic (int): Index of individual being mutated. |
103
|
|
|
x_b (Individual): Current global best individual. |
104
|
|
|
f (float): Scale factor. |
105
|
|
|
cr (float): Crossover probability. |
106
|
|
|
rnd (mtrand.RandomState): Random generator. |
107
|
|
|
*args (list): Additional arguments. |
108
|
|
|
|
109
|
|
|
Returns: |
110
|
|
|
numpy.ndarray: mutated and mixed individual. |
111
|
|
|
""" |
112
|
|
|
j = rnd.randint(len(pop[ic])) |
113
|
|
|
p = [1 / (len(pop) - 1.0) if i != ic else 0 for i in range(len(pop))] if len(pop) > 5 else None |
114
|
|
|
r = rnd.choice(len(pop), 5, replace=not len(pop) >= 5, p=p) |
115
|
|
|
x = [pop[r[0]][i] + f * (pop[r[1]][i] - pop[r[2]][i]) + f * (pop[r[3]][i] - pop[r[4]][i]) if rnd.rand() < cr or i == j else pop[ic][i] for i in range(len(pop[ic]))] |
116
|
|
|
return asarray(x) |
117
|
|
|
|
118
|
|
View Code Duplication |
def CrossBest2(pop, ic, x_b, f, cr, rnd=rand, *args): |
|
|
|
|
119
|
|
|
r"""Mutation strategy with crossover. |
120
|
|
|
|
121
|
|
|
Mutation: |
122
|
|
|
Name: de/best/2 |
123
|
|
|
|
124
|
|
|
:math:`\mathbf{v}_{i, G} = \mathbf{x}_{best, G} + F \cdot (\mathbf{x}_{r_1, G} - \mathbf{x}_{r_2, G}) + F \cdot (\mathbf{x}_{r_3, G} - \mathbf{x}_{r_4, G})` |
125
|
|
|
where :math:`r_1, r_2, r_3, r_4` are random indexes representing current population individuals. |
126
|
|
|
|
127
|
|
|
Crossover: |
128
|
|
|
Name: Binomial crossover |
129
|
|
|
|
130
|
|
|
:math:`\mathbf{x}_{i, G+1} = \begin{cases} \mathbf{u}_{i, G+1}, & \text{if $f(\mathbf{u}_{i, G+1}) \leq f(\mathbf{x}_{i, G})$}, \\ \mathbf{x}_{i, G}, & \text{otherwise}. \end{cases}` |
131
|
|
|
|
132
|
|
|
Args: |
133
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
134
|
|
|
ic (int): Index of individual being mutated. |
135
|
|
|
x_b (Individual): Current global best individual. |
136
|
|
|
f (float): Scale factor. |
137
|
|
|
cr (float): Crossover probability. |
138
|
|
|
rnd (mtrand.RandomState): Random generator. |
139
|
|
|
*args (list): Additional arguments. |
140
|
|
|
|
141
|
|
|
Returns: |
142
|
|
|
numpy.ndarray: mutated and mixed individual. |
143
|
|
|
""" |
144
|
|
|
j = rnd.randint(len(pop[ic])) |
145
|
|
|
p = [1 / (len(pop) - 1.0) if i != ic else 0 for i in range(len(pop))] if len(pop) > 4 else None |
146
|
|
|
r = rnd.choice(len(pop), 4, replace=not len(pop) >= 4, p=p) |
147
|
|
|
x = [x_b[i] + f * (pop[r[0]][i] - pop[r[1]][i]) + f * (pop[r[2]][i] - pop[r[3]][i]) if rnd.rand() < cr or i == j else pop[ic][i] for i in range(len(pop[ic]))] |
148
|
|
|
return asarray(x) |
149
|
|
|
|
150
|
|
View Code Duplication |
def CrossCurr2Rand1(pop, ic, x_b, f, cr, rnd=rand, *args): |
|
|
|
|
151
|
|
|
r"""Mutation strategy with crossover. |
152
|
|
|
|
153
|
|
|
Mutation: |
154
|
|
|
Name: de/curr2rand/1 |
155
|
|
|
|
156
|
|
|
:math:`\mathbf{v}_{i, G} = \mathbf{x}_{i, G} + F \cdot (\mathbf{x}_{r_1, G} - \mathbf{x}_{r_2, G}) + F \cdot (\mathbf{x}_{r_3, G} - \mathbf{x}_{r_4, G})` |
157
|
|
|
where :math:`r_1, r_2, r_3, r_4` are random indexes representing current population individuals |
158
|
|
|
|
159
|
|
|
Crossover: |
160
|
|
|
Name: Binomial crossover |
161
|
|
|
|
162
|
|
|
:math:`\mathbf{x}_{i, G+1} = \begin{cases} \mathbf{u}_{i, G+1}, & \text{if $f(\mathbf{u}_{i, G+1}) \leq f(\mathbf{x}_{i, G})$}, \\ \mathbf{x}_{i, G}, & \text{otherwise}. \end{cases}` |
163
|
|
|
|
164
|
|
|
Args: |
165
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
166
|
|
|
ic (int): Index of individual being mutated. |
167
|
|
|
x_b (Individual): Current global best individual. |
168
|
|
|
f (float): Scale factor. |
169
|
|
|
cr (float): Crossover probability. |
170
|
|
|
rnd (mtrand.RandomState): Random generator. |
171
|
|
|
*args (list): Additional arguments. |
172
|
|
|
|
173
|
|
|
Returns: |
174
|
|
|
numpy.ndarray: mutated and mixed individual. |
175
|
|
|
""" |
176
|
|
|
j = rnd.randint(len(pop[ic])) |
177
|
|
|
p = [1 / (len(pop) - 1.0) if i != ic else 0 for i in range(len(pop))] if len(pop) > 4 else None |
178
|
|
|
r = rnd.choice(len(pop), 4, replace=not len(pop) >= 4, p=p) |
179
|
|
|
x = [pop[ic][i] + f * (pop[r[0]][i] - pop[r[1]][i]) + f * (pop[r[2]][i] - pop[r[3]][i]) if rnd.rand() < cr or i == j else pop[ic][i] for i in range(len(pop[ic]))] |
180
|
|
|
return asarray(x) |
181
|
|
|
|
182
|
|
|
def CrossCurr2Best1(pop, ic, x_b, f, cr, rnd=rand, **kwargs): |
183
|
|
|
r"""Mutation strategy with crossover. |
184
|
|
|
|
185
|
|
|
Mutation: |
186
|
|
|
Name: de/curr-to-best/1 |
187
|
|
|
|
188
|
|
|
:math:`\mathbf{v}_{i, G} = \mathbf{x}_{i, G} + F \cdot (\mathbf{x}_{r_1, G} - \mathbf{x}_{r_2, G}) + F \cdot (\mathbf{x}_{r_3, G} - \mathbf{x}_{r_4, G})` |
189
|
|
|
where :math:`r_1, r_2, r_3, r_4` are random indexes representing current population individuals |
190
|
|
|
|
191
|
|
|
Crossover: |
192
|
|
|
Name: Binomial crossover |
193
|
|
|
|
194
|
|
|
:math:`\mathbf{x}_{i, G+1} = \begin{cases} \mathbf{u}_{i, G+1}, & \text{if $f(\mathbf{u}_{i, G+1}) \leq f(\mathbf{x}_{i, G})$}, \\ \mathbf{x}_{i, G}, & \text{otherwise}. \end{cases}` |
195
|
|
|
|
196
|
|
|
Args: |
197
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
198
|
|
|
ic (int): Index of individual being mutated. |
199
|
|
|
x_b (Individual): Current global best individual. |
200
|
|
|
f (float): Scale factor. |
201
|
|
|
cr (float): Crossover probability. |
202
|
|
|
rnd (mtrand.RandomState): Random generator. |
203
|
|
|
*args (list): Additional arguments. |
204
|
|
|
|
205
|
|
|
Returns: |
206
|
|
|
numpy.ndarray: mutated and mixed individual. |
207
|
|
|
""" |
208
|
|
|
j = rnd.randint(len(pop[ic])) |
209
|
|
|
p = [1 / (len(pop) - 1.0) if i != ic else 0 for i in range(len(pop))] if len(pop) > 3 else None |
210
|
|
|
r = rnd.choice(len(pop), 3, replace=not len(pop) >= 3, p=p) |
211
|
|
|
x = [pop[ic][i] + f * (x_b[i] - pop[r[0]][i]) + f * (pop[r[1]][i] - pop[r[2]][i]) if rnd.rand() < cr or i == j else pop[ic][i] for i in range(len(pop[ic]))] |
212
|
|
|
return asarray(x) |
213
|
|
|
|
214
|
|
|
class DifferentialEvolution(Algorithm): |
215
|
|
|
r"""Implementation of Differential evolution algorithm. |
216
|
|
|
|
217
|
|
|
Algorithm: |
218
|
|
|
Differential evolution algorithm |
219
|
|
|
|
220
|
|
|
Date: |
221
|
|
|
2018 |
222
|
|
|
|
223
|
|
|
Author: |
224
|
|
|
Uros Mlakar and Klemen Berkovič |
225
|
|
|
|
226
|
|
|
License: |
227
|
|
|
MIT |
228
|
|
|
|
229
|
|
|
Reference paper: |
230
|
|
|
Storn, Rainer, and Kenneth Price. "Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces." Journal of global optimization 11.4 (1997): 341-359. |
231
|
|
|
|
232
|
|
|
Attributes: |
233
|
|
|
Name (List[str]): List of string of names for algorithm. |
234
|
|
|
F (float): Scale factor. |
235
|
|
|
CR (float): Crossover probability. |
236
|
|
|
CrossMutt (Callable[numpy.ndarray, int, numpy.ndarray, float, float, mtrand.RandomState, Dict[str, Any]]): crossover and mutation strategy. |
237
|
|
|
|
238
|
|
|
See Also: |
239
|
|
|
* :class:`NiaPy.algorithms.Algorithm` |
240
|
|
|
""" |
241
|
|
|
Name = ['DifferentialEvolution', 'DE'] |
242
|
|
|
|
243
|
|
|
@staticmethod |
244
|
|
|
def typeParameters(): |
245
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
246
|
|
|
|
247
|
|
|
Returns: |
248
|
|
|
Dict[str, Callable]: |
249
|
|
|
* F (Callable[[Union[float, int]], bool]): Check for correct value of parameter. |
250
|
|
|
* CR (Callable[[float], bool]): Check for correct value of parameter. |
251
|
|
|
|
252
|
|
|
See Also: |
253
|
|
|
* :func:`NiaPy.algorithms.Algorithm.typeParameters` |
254
|
|
|
""" |
255
|
|
|
d = Algorithm.typeParameters() |
256
|
|
|
d.update({ |
257
|
|
|
'F': lambda x: isinstance(x, (float, int)) and 0 < x <= 2, |
258
|
|
|
'CR': lambda x: isinstance(x, float) and 0 <= x <= 1 |
259
|
|
|
}) |
260
|
|
|
return d |
261
|
|
|
|
262
|
|
|
def setParameters(self, NP=50, F=1, CR=0.8, CrossMutt=CrossRand1, **ukwargs): |
263
|
|
|
r"""Set the algorithm parameters. |
264
|
|
|
|
265
|
|
|
Arguments: |
266
|
|
|
NP (Optional[int]): Population size. |
267
|
|
|
F (Optional[float]): Scaling factor. |
268
|
|
|
CR (Optional[float]): Crossover rate. |
269
|
|
|
CrossMutt (Optional[Callable[[numpy.ndarray, int, numpy.ndarray, float, float, mtrand.RandomState, list], numpy.ndarray]]): Crossover and mutation strategy. |
270
|
|
|
ukwargs (Dict[str, Any]): Additional arguments. |
271
|
|
|
|
272
|
|
|
See Also: |
273
|
|
|
* :func:`NiaPy.algorithms.Algorithm.setParameters` |
274
|
|
|
""" |
275
|
|
|
Algorithm.setParameters(self, NP=NP, InitPopFunc=ukwargs.pop('InitPopFunc', defaultIndividualInit), itype=ukwargs.pop('itype', Individual), **ukwargs) |
276
|
|
|
self.F, self.CR, self.CrossMutt = F, CR, CrossMutt |
277
|
|
|
if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) |
278
|
|
|
|
279
|
|
|
def evolve(self, pop, xb, task, **kwargs): |
280
|
|
|
r"""Evolve population. |
281
|
|
|
|
282
|
|
|
Args: |
283
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
284
|
|
|
xb (Individual): Current best individual. |
285
|
|
|
task (Task): Optimization task. |
286
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
287
|
|
|
|
288
|
|
|
Returns: |
289
|
|
|
numpy.ndarray[Individual]: New evolved populations. |
290
|
|
|
""" |
291
|
|
|
return objects2array([self.itype(x=self.CrossMutt(pop, i, xb, self.F, self.CR, self.Rand), task=task, rnd=self.Rand, e=True) for i in range(len(pop))]) |
292
|
|
|
|
293
|
|
|
def selection(self, pop, npop, **kwargs): |
294
|
|
|
r"""Operator for selection. |
295
|
|
|
|
296
|
|
|
Args: |
297
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
298
|
|
|
npop (numpy.ndarray[Individual]): New Population. |
299
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
300
|
|
|
|
301
|
|
|
Returns: |
302
|
|
|
numpy.ndarray[Individual]: New selected individuals. |
303
|
|
|
""" |
304
|
|
|
return objects2array([e if e.f < pop[i].f else pop[i] for i, e in enumerate(npop)]) |
305
|
|
|
|
306
|
|
|
def postSelection(self, pop, task, xb=None, **kwargs): |
307
|
|
|
r"""Apply additional operation after selection. |
308
|
|
|
|
309
|
|
|
Args: |
310
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
311
|
|
|
task (Task): Optimization task. |
312
|
|
|
xb (Optional[Individual]): Global best solution. |
313
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
314
|
|
|
|
315
|
|
|
Returns: |
316
|
|
|
numpy.ndarray[Individual]: New population. |
317
|
|
|
""" |
318
|
|
|
return pop |
319
|
|
|
|
320
|
|
|
def runIteration(self, task, pop, fpop, xb, fxb, **dparams): |
321
|
|
|
r"""Core function of Differential Evolution algorithm. |
322
|
|
|
|
323
|
|
|
Args: |
324
|
|
|
task (Task): Optimization task. |
325
|
|
|
pop (numpy.ndarray[Initialized]): Current population. |
326
|
|
|
fpop (numpy.ndarray[float]): Current populations fitness/function values. |
327
|
|
|
xb (Individual): Current best individual. |
328
|
|
|
fxb (float): Current best individual function/fitness value. |
329
|
|
|
**dparams (Dict[str, Any]): Additional arguments. |
330
|
|
|
|
331
|
|
|
Returns: |
332
|
|
|
Tuple[numpy.ndarray[Individual], numpy.ndarray[float], Dict[str, Any]]: |
333
|
|
|
1. New population. |
334
|
|
|
2. New population fitness/function values. |
335
|
|
|
3. Additional arguments. |
336
|
|
|
|
337
|
|
|
See Also: |
338
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.evolve` |
339
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.selection` |
340
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.postSelection` |
341
|
|
|
""" |
342
|
|
|
npop = self.evolve(pop, xb, task) |
343
|
|
|
pop = self.selection(pop, npop) |
344
|
|
|
pop = self.postSelection(pop, task, xb=xb) |
345
|
|
|
return pop, asarray([x.f for x in pop]), {} |
346
|
|
|
|
347
|
|
|
class CrowdingDifferentialEvolution(DifferentialEvolution): |
348
|
|
|
r"""Implementation of Differential evolution algorithm with multiple mutation strateys. |
349
|
|
|
|
350
|
|
|
Algorithm: |
351
|
|
|
Implementation of Differential evolution algorithm with multiple mutation strateys |
352
|
|
|
|
353
|
|
|
Date: |
354
|
|
|
2018 |
355
|
|
|
|
356
|
|
|
Author: |
357
|
|
|
Klemen Berkovič |
358
|
|
|
|
359
|
|
|
License: |
360
|
|
|
MIT |
361
|
|
|
|
362
|
|
|
Attributes: |
363
|
|
|
Name (List[str]): List of strings representing algorithm name. |
364
|
|
|
CrowPop (float): Proportion of range for cowding. |
365
|
|
|
|
366
|
|
|
See Also: |
367
|
|
|
* :class:`NiaPy.algorithms.basic.DifferentialEvolution` |
368
|
|
|
""" |
369
|
|
|
Name = ['CrowdingDifferentialEvolution', 'CDE'] |
370
|
|
|
|
371
|
|
|
def __init__(self, **kwargs): |
372
|
|
|
r"""Init CrowdingDifferentialEvolution algorithm. |
373
|
|
|
|
374
|
|
|
Args: |
375
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
376
|
|
|
|
377
|
|
|
See Also: |
378
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.__init__` |
379
|
|
|
""" |
380
|
|
|
DifferentialEvolution.__init__(self, **kwargs) |
381
|
|
|
|
382
|
|
|
def setParameters(self, CrowPop=0.1, **ukwargs): |
383
|
|
|
r"""Set core parameters of algorithm. |
384
|
|
|
|
385
|
|
|
Args: |
386
|
|
|
CrowPop (Optional[float]): Crowding distance. |
387
|
|
|
**ukwargs: Additional arguments. |
388
|
|
|
|
389
|
|
|
See Also: |
390
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.setParameters` |
391
|
|
|
""" |
392
|
|
|
DifferentialEvolution.setParameters(self, **ukwargs) |
393
|
|
|
self.CrowPop = CrowPop |
394
|
|
|
|
395
|
|
|
def selection(self, pop, npop): |
396
|
|
|
r"""Operator for selection of individuals. |
397
|
|
|
|
398
|
|
|
Args: |
399
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
400
|
|
|
npop (numpy.ndarray[Individual]): New population. |
401
|
|
|
|
402
|
|
|
Returns: |
403
|
|
|
numpy.ndarray[Individual]: New population. |
404
|
|
|
""" |
405
|
|
|
P = [] |
406
|
|
|
for e in npop: |
407
|
|
|
i = argmin([euclidean(e, f) for f in pop]) |
408
|
|
|
P.append(pop[i] if pop[i].f < e.f else e) |
409
|
|
|
return asarray(P) |
410
|
|
|
|
411
|
|
View Code Duplication |
class DynNpDifferentialEvolution(DifferentialEvolution): |
|
|
|
|
412
|
|
|
r"""Implementation of Dynamic poulation size Differential evolution algorithm. |
413
|
|
|
|
414
|
|
|
Algorithm: |
415
|
|
|
Dynamic poulation size Differential evolution algorithm |
416
|
|
|
|
417
|
|
|
Date: |
418
|
|
|
2018 |
419
|
|
|
|
420
|
|
|
Author: |
421
|
|
|
Klemen Berkovič |
422
|
|
|
|
423
|
|
|
License: |
424
|
|
|
MIT |
425
|
|
|
|
426
|
|
|
Attributes: |
427
|
|
|
Name (List[str]): List of strings representing algorithm names. |
428
|
|
|
pmax (int): TODO |
429
|
|
|
rp (int): TODO |
430
|
|
|
|
431
|
|
|
See Also: |
432
|
|
|
* :class:`NiaPy.algorithms.basic.DifferentialEvolution` |
433
|
|
|
""" |
434
|
|
|
Name = ['DynNpDifferentialEvolution', 'dynNpDE'] |
435
|
|
|
|
436
|
|
|
@staticmethod |
437
|
|
|
def typeParameters(): |
438
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
439
|
|
|
|
440
|
|
|
Returns: |
441
|
|
|
Dict[str, Callable]: |
442
|
|
|
* rp (Callable[[Union[float, int]], bool]): TODO |
443
|
|
|
* pmax (Callable[[int], bool]): TODO |
444
|
|
|
|
445
|
|
|
See Also: |
446
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.typeParameters` |
447
|
|
|
""" |
448
|
|
|
r = DifferentialEvolution.typeParameters() |
449
|
|
|
r['rp'] = lambda x: isinstance(x, (float, int)) and x > 0 |
450
|
|
|
r['pmax'] = lambda x: isinstance(x, int) and x > 0 |
451
|
|
|
return r |
452
|
|
|
|
453
|
|
|
def setParameters(self, pmax=50, rp=3, **ukwargs): |
454
|
|
|
r"""Set the algorithm parameters. |
455
|
|
|
|
456
|
|
|
Arguments: |
457
|
|
|
pmax (Optional[int]): TODO |
458
|
|
|
rp (Optional[int]): TODO |
459
|
|
|
|
460
|
|
|
See Also: |
461
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.setParameters` |
462
|
|
|
""" |
463
|
|
|
DifferentialEvolution.setParameters(self, **ukwargs) |
464
|
|
|
self.pmax, self.rp = pmax, rp |
465
|
|
|
if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) |
466
|
|
|
|
467
|
|
|
def postSelection(self, pop, task, **kwargs): |
468
|
|
|
r"""Post selection operator. |
469
|
|
|
|
470
|
|
|
In this algorithm the post selection operator decrements the population at specific iterations/generations. |
471
|
|
|
|
472
|
|
|
Args: |
473
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
474
|
|
|
task (Task): Optimization task. |
475
|
|
|
kwargs (Dict[str, Any]): Additional arguments. |
476
|
|
|
|
477
|
|
|
Returns: |
478
|
|
|
numpy.ndarray[Individual]: Changed current population. |
479
|
|
|
""" |
480
|
|
|
Gr = task.nFES // (self.pmax * len(pop)) + self.rp |
481
|
|
|
nNP = len(pop) // 2 |
482
|
|
|
if task.Iters == Gr and len(pop) > 3: pop = objects2array([pop[i] if pop[i].f < pop[i + nNP].f else pop[i + nNP] for i in range(nNP)]) |
483
|
|
|
return pop |
484
|
|
|
|
485
|
|
|
def proportional(Lt_min, Lt_max, mu, x_f, avg, *args): |
486
|
|
|
r"""Proportional calculation of age of individual. |
487
|
|
|
|
488
|
|
|
Args: |
489
|
|
|
Lt_min (int): Minimal life time. |
490
|
|
|
Lt_max (int): Maximal life time. |
491
|
|
|
mu (float): TODO |
492
|
|
|
x_f (float): Individuals function/fitness value. |
493
|
|
|
avg (float): Average fitness/function value of current population. |
494
|
|
|
*args (list): Additional arguments. |
495
|
|
|
|
496
|
|
|
Returns: |
497
|
|
|
int: Age of individual. |
498
|
|
|
""" |
499
|
|
|
return min(Lt_min + mu * avg / x_f, Lt_max) |
500
|
|
|
|
501
|
|
|
def linear(Lt_min, Lt_max, mu, x_f, avg, x_gw, x_gb, *args): |
502
|
|
|
r"""Linear calculation of age of individual. |
503
|
|
|
|
504
|
|
|
Args: |
505
|
|
|
Lt_min (int): Minimal life time. |
506
|
|
|
Lt_max (int): Maximal life time. |
507
|
|
|
mu (float): TODO |
508
|
|
|
x_f (float): Individual function/fitness value. |
509
|
|
|
avg (float): Average fitness/function value. |
510
|
|
|
x_gw (float): Global worst fitness/function value. |
511
|
|
|
x_gb (float): Global best fitness/function value. |
512
|
|
|
*args (list): Additional arguments. |
513
|
|
|
|
514
|
|
|
Returns: |
515
|
|
|
int: Age of individual. |
516
|
|
|
""" |
517
|
|
|
return Lt_min + 2 * mu * (x_f - x_gw) / (x_gb - x_gw) |
518
|
|
|
|
519
|
|
|
def bilinear(Lt_min, Lt_max, mu, x_f, avg, x_gw, x_gb, *args): |
520
|
|
|
r"""Bilinear calculation of age of individual. |
521
|
|
|
|
522
|
|
|
Args: |
523
|
|
|
Lt_min (int): Minimal life time. |
524
|
|
|
Lt_max (int): Maximal life time. |
525
|
|
|
mu (float): TODO |
526
|
|
|
x_f (float): Individual function/fitness value. |
527
|
|
|
avg (float): Average fitness/function value. |
528
|
|
|
x_gw (float): Global worst fitness/function value. |
529
|
|
|
x_gb (float): Global best fitness/function value. |
530
|
|
|
*args (list): Additional arguments. |
531
|
|
|
|
532
|
|
|
Returns: |
533
|
|
|
int: Age of individual. |
534
|
|
|
""" |
535
|
|
|
if avg < x_f: return Lt_min + mu * (x_f - x_gw) / (x_gb - x_gw) |
536
|
|
|
return 0.5 * (Lt_min + Lt_max) + mu * (x_f - avg) / (x_gb - avg) |
537
|
|
|
|
538
|
|
|
class AgingIndividual(Individual): |
539
|
|
|
r"""Individual with aging. |
540
|
|
|
|
541
|
|
|
Attributes: |
542
|
|
|
age (int): Age of individual. |
543
|
|
|
|
544
|
|
|
See Also: |
545
|
|
|
* :class:`NiaPy.algorithms.Individual` |
546
|
|
|
""" |
547
|
|
|
age = 0 |
548
|
|
|
|
549
|
|
|
def __init__(self, **kwargs): |
550
|
|
|
r"""Init Aging Individual. |
551
|
|
|
|
552
|
|
|
Args: |
553
|
|
|
**kwargs (Dict[str, Any]): Additional arguments sent to parent. |
554
|
|
|
|
555
|
|
|
See Also: |
556
|
|
|
* :func:`NiaPy.algorithms.Individual.__init__` |
557
|
|
|
""" |
558
|
|
|
Individual.__init__(self, **kwargs) |
559
|
|
|
self.age = 0 |
560
|
|
|
|
561
|
|
|
class AgingNpDifferentialEvolution(DifferentialEvolution): |
562
|
|
|
r"""Implementation of Differential evolution algorithm with aging individuals. |
563
|
|
|
|
564
|
|
|
Algorithm: |
565
|
|
|
Differential evolution algorithm with dynamic population size that is defined by the quality of population |
566
|
|
|
|
567
|
|
|
Date: |
568
|
|
|
2018 |
569
|
|
|
|
570
|
|
|
Author: |
571
|
|
|
Klemen Berkovič |
572
|
|
|
|
573
|
|
|
License: |
574
|
|
|
MIT |
575
|
|
|
|
576
|
|
|
Attributes: |
577
|
|
|
Name (List[str]): list of strings representing algorithm names. |
578
|
|
|
Lt_min (int): minimal age of individual. |
579
|
|
|
Lt_max (int): maximal age of individual. |
580
|
|
|
delta_np (float): TODO |
581
|
|
|
omega (float): TODO |
582
|
|
|
mu (int): Mean of individual max and min age. |
583
|
|
|
age (Callable[[int, int, float, float, float, float, float], int]): Function for calculation of age for individual. |
584
|
|
|
|
585
|
|
|
See Also: |
586
|
|
|
* :class:`NiaPy.algorithms.basic.DifferentialEvolution` |
587
|
|
|
""" |
588
|
|
|
Name = ['AgingNpDifferentialEvolution', 'ANpDE'] |
589
|
|
|
|
590
|
|
|
@staticmethod |
591
|
|
|
def typeParameters(): |
592
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
593
|
|
|
|
594
|
|
|
Returns: |
595
|
|
|
Dict[str, Callable]: |
596
|
|
|
* Lt_min (Callable[[int], bool]): TODO |
597
|
|
|
* Lt_max (Callable[[int], bool]): TODO |
598
|
|
|
* delta_np (Callable[[float], bool]): TODO |
599
|
|
|
* omega (Callable[[float], bool]): TODO |
600
|
|
|
|
601
|
|
|
See Also: |
602
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.typeParameters` |
603
|
|
|
""" |
604
|
|
|
r = DifferentialEvolution.typeParameters() |
605
|
|
|
r.update({ |
606
|
|
|
'Lt_min': lambda x: isinstance(x, int) and x >= 0, |
607
|
|
|
'Lt_max': lambda x: isinstance(x, int) and x >= 0, |
608
|
|
|
'delta_np': lambda x: isinstance(x, float) and 0 <= x <= 1, |
609
|
|
|
'omega': lambda x: isinstance(x, float) and x >= 0 |
610
|
|
|
}) |
611
|
|
|
return r |
612
|
|
|
|
613
|
|
|
def setParameters(self, Lt_min=0, Lt_max=12, delta_np=0.3, omega=0.3, age=proportional, CrossMutt=CrossBest1, **ukwargs): |
614
|
|
|
r"""Set the algorithm parameters. |
615
|
|
|
|
616
|
|
|
Arguments: |
617
|
|
|
Lt_min (Optional[int]): Minimu life time. |
618
|
|
|
Lt_max (Optional[int]): Maximum life time. |
619
|
|
|
age (Optional[Callable[[int, int, float, float, float, float, float], int]]): Function for calculation of age for individual. |
620
|
|
|
|
621
|
|
|
See Also: |
622
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.setParameters` |
623
|
|
|
""" |
624
|
|
|
DifferentialEvolution.setParameters(self, itype=AgingIndividual, **ukwargs) |
625
|
|
|
self.Lt_min, self.Lt_max, self.age, self.delta_np, self.omega = Lt_min, Lt_max, age, delta_np, omega |
626
|
|
|
self.mu = abs(self.Lt_max - self.Lt_min) / 2 |
627
|
|
|
if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) |
628
|
|
|
|
629
|
|
|
def deltaPopE(self, t): |
630
|
|
|
r"""Calculate how many individuals are going to dye. |
631
|
|
|
|
632
|
|
|
Args: |
633
|
|
|
t (float): TODO |
634
|
|
|
|
635
|
|
|
Returns: |
636
|
|
|
float: Number of individuals to dye. |
637
|
|
|
""" |
638
|
|
|
return self.delta_np * abs(cos(t)) |
639
|
|
|
|
640
|
|
|
def deltaPopC(self, t): |
641
|
|
|
r"""Calculate how many individuals are going to be created. |
642
|
|
|
|
643
|
|
|
Args: |
644
|
|
|
t (float): TODO |
645
|
|
|
|
646
|
|
|
Returns: |
647
|
|
|
float: TODO |
648
|
|
|
""" |
649
|
|
|
return self.delta_np * abs(cos(t + 78)) |
650
|
|
|
|
651
|
|
|
def aging(self, task, pop): |
652
|
|
|
r"""Apply aging to individuals. |
653
|
|
|
|
654
|
|
|
Args: |
655
|
|
|
task (Task): Optimization task. |
656
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
657
|
|
|
|
658
|
|
|
Returns: |
659
|
|
|
numpy.ndarray[Individual]: New population. |
660
|
|
|
""" |
661
|
|
|
fpop = asarray([x.f for x in pop]) |
662
|
|
|
x_b, x_w = pop[argmin(fpop)], pop[argmax(fpop)] |
663
|
|
|
avg, npop = mean(fpop), [] |
664
|
|
|
for x in pop: |
665
|
|
|
x.age += 1 |
666
|
|
|
Lt = round(self.age(self.Lt_min, self.Lt_max, self.mu, x.f, avg, x_w, x_b)) |
667
|
|
|
if x.age <= Lt: npop.append(x) |
668
|
|
|
if len(npop) != 0: npop = objects2array([self.itype(task=task, rnd=self.Rand, e=True) for _i in range(len(pop))]) |
669
|
|
|
return npop |
670
|
|
|
|
671
|
|
|
def popIncrement(self, pop, task): |
672
|
|
|
r"""Increment population. |
673
|
|
|
|
674
|
|
|
Args: |
675
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
676
|
|
|
task (Task): Optimization task. |
677
|
|
|
|
678
|
|
|
Returns: |
679
|
|
|
numpy.ndarray[Individual]: Increased population. |
680
|
|
|
""" |
681
|
|
|
deltapop = int(round(max(1, self.NP * self.deltaPopE(task.Iters)))) |
682
|
|
|
return objects2array([self.itype(task=task, rnd=self.Rand, e=True) for _ in range(deltapop)]) |
683
|
|
|
|
684
|
|
|
def popDecrement(self, pop, task): |
685
|
|
|
r"""Decrement population. |
686
|
|
|
|
687
|
|
|
Args: |
688
|
|
|
pop (numpy.ndarray): Current population. |
689
|
|
|
task (Task): Optimization task. |
690
|
|
|
|
691
|
|
|
Returns: |
692
|
|
|
numpy.ndarray[Individual]: Decreased population. |
693
|
|
|
""" |
694
|
|
|
deltapop = int(round(max(1, self.NP * self.deltaPopC(task.Iters)))) |
695
|
|
|
if len(pop) - deltapop <= 0: return pop |
696
|
|
|
ni = self.Rand.choice(len(pop), deltapop, replace=False) |
697
|
|
|
npop = [] |
698
|
|
|
for i, e in enumerate(pop): |
699
|
|
|
if i not in ni: npop.append(e) |
700
|
|
|
elif self.rand() >= self.omega: npop.append(e) |
701
|
|
|
return objects2array(npop) |
702
|
|
|
|
703
|
|
|
def runIteration(self, task, pop, fpop, xb, fxb, **dparams): |
704
|
|
|
r"""Core function of AgingNpDifferentialEvolution algorithm. |
705
|
|
|
|
706
|
|
|
Args: |
707
|
|
|
task (Task): Optimization task |
708
|
|
|
pop (numpy.ndarray[Individual]): Current population |
709
|
|
|
fpop (numpy.ndarray[float]): Current populations function/fitness values |
710
|
|
|
xb (Individual): Current best individual |
711
|
|
|
fxb (float): Current best individual function/fitness value |
712
|
|
|
**dparams (Dict[str, Any]): Additional parameters |
713
|
|
|
|
714
|
|
|
Returns: |
715
|
|
|
Tuple[numpy.ndarray[Individual], numpy.ndarray[float], Dict[str, Any]]: |
716
|
|
|
1. New population |
717
|
|
|
2. New population fitness/function values |
718
|
|
|
3. Additional parameters |
719
|
|
|
""" |
720
|
|
|
npop = self.evolve(pop, xb, task) |
721
|
|
|
npop = self.selection(pop, npop) |
722
|
|
|
npop = append(npop, self.popIncrement(pop, task)) |
723
|
|
|
pop = self.aging(task, npop) |
724
|
|
|
if len(pop) > self.NP: pop = self.popDecrement(pop, task) |
725
|
|
|
return pop, [x.f for x in pop], {} |
726
|
|
|
|
727
|
|
|
def multiMutations(pop, i, xb, F, CR, rnd, task, itype, strategies, **kwargs): |
728
|
|
|
r"""Mutation strategy that takes more than one strategy and applys them to individual. |
729
|
|
|
|
730
|
|
|
Args: |
731
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
732
|
|
|
i (int): Index of current individual. |
733
|
|
|
xb (Individual): Current best individual. |
734
|
|
|
F (float): Scale factor. |
735
|
|
|
CR (float): Crossover probability. |
736
|
|
|
rnd (mtrand.RandomState): Random generator. |
737
|
|
|
task (Task): Optimization task. |
738
|
|
|
IndividualType (Individual): Individual type used in algorithm. |
739
|
|
|
strategies (Iterable[Callable[[numpy.ndarray[Individual], int, Individual, float, float, mtrand.RandomState], numpy.ndarray[Individual]]]): List of mutation strategies. |
740
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
741
|
|
|
|
742
|
|
|
Returns: |
743
|
|
|
Individual: Best individual from applyed mutations strategies. |
744
|
|
|
""" |
745
|
|
|
L = [itype(x=strategy(pop, i, xb, F, CR, rnd=rnd), task=task, e=True, rnd=rnd) for strategy in strategies] |
746
|
|
|
return L[argmin([x.f for x in L])] |
747
|
|
|
|
748
|
|
|
class MultiStrategyDifferentialEvolution(DifferentialEvolution): |
749
|
|
|
r"""Implementation of Differential evolution algorithm with multiple mutation strateys. |
750
|
|
|
|
751
|
|
|
Algorithm: |
752
|
|
|
Implementation of Differential evolution algorithm with multiple mutation strateys |
753
|
|
|
|
754
|
|
|
Date: |
755
|
|
|
2018 |
756
|
|
|
|
757
|
|
|
Author: |
758
|
|
|
Klemen Berkovič |
759
|
|
|
|
760
|
|
|
License: |
761
|
|
|
MIT |
762
|
|
|
|
763
|
|
|
Attributes: |
764
|
|
|
Name (List[str]): List of strings representing algorithm names. |
765
|
|
|
strategies (Iterable[Callable[[numpy.ndarray[Individual], int, Individual, float, float, mtrand.RandomState], numpy.ndarray[Individual]]]): List of mutation strategies. |
766
|
|
|
CrossMutt (Callable[[numpy.ndarray[Individual], int, Individual, float, float, Task, Individual, Iterable[Callable[[numpy.ndarray, int, numpy.ndarray, float, float, mtrand.RandomState, Dict[str, Any]], Individual]]], Individual]): Multi crossover and mutation combiner function. |
767
|
|
|
|
768
|
|
|
See Also: |
769
|
|
|
* :class:`NiaPy.algorithms.basic.DifferentialEvolution` |
770
|
|
|
""" |
771
|
|
|
Name = ['MultiStrategyDifferentialEvolution', 'MsDE'] |
772
|
|
|
|
773
|
|
|
@staticmethod |
774
|
|
|
def typeParameters(): |
775
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
776
|
|
|
|
777
|
|
|
Returns: |
778
|
|
|
Dict[str, Callable]: |
779
|
|
|
* CrossMutt (Callable[[Callable, bool]): TODO |
780
|
|
|
|
781
|
|
|
See Also: |
782
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.typeParameters` |
783
|
|
|
""" |
784
|
|
|
r = DifferentialEvolution.typeParameters() |
785
|
|
|
r.pop('CrossMutt', None) |
786
|
|
|
# TODO add constraint method for selection of stratgy methos |
787
|
|
|
return r |
788
|
|
|
|
789
|
|
|
def setParameters(self, strategies=(CrossRand1, CrossBest1, CrossCurr2Best1, CrossRand2), **ukwargs): |
790
|
|
|
r"""Set the arguments of the algorithm. |
791
|
|
|
|
792
|
|
|
Arguments: |
793
|
|
|
strategies (Optional[Iterable[Callable[[numpy.ndarray[Individual], int, Individual, float, float, mtrand.RandomState], numpy.ndarray[Individual]]]]): List of mutation strategyis. |
794
|
|
|
CrossMutt (Optional[Callable[[numpy.ndarray[Individual], int, Individual, float, float, Task, Individual, Iterable[Callable[[numpy.ndarray, int, numpy.ndarray, float, float, mtrand.RandomState, Dict[str, Any]], Individual]]], Individual]]): Multi crossover and mutation combiner function. |
795
|
|
|
|
796
|
|
|
See Also: |
797
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.setParameters` |
798
|
|
|
""" |
799
|
|
|
DifferentialEvolution.setParameters(self, CrossMutt=multiMutations, **ukwargs) |
800
|
|
|
self.strategies = strategies |
801
|
|
|
|
802
|
|
View Code Duplication |
def evolve(self, pop, xb, task, **kwargs): |
|
|
|
|
803
|
|
|
r"""Evolve population with the help multiple mutation strategies. |
804
|
|
|
|
805
|
|
|
Args: |
806
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
807
|
|
|
xb (Individual): Current best individual. |
808
|
|
|
task (Task): Optimization task. |
809
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
810
|
|
|
|
811
|
|
|
Returns: |
812
|
|
|
numpy.ndarray[Individual]: New population of individuals. |
813
|
|
|
""" |
814
|
|
|
return objects2array([self.CrossMutt(pop, i, xb, self.F, self.CR, self.Rand, task, self.itype, self.strategies) for i in range(len(pop))]) |
815
|
|
|
|
816
|
|
|
class DynNpMultiStrategyDifferentialEvolution(MultiStrategyDifferentialEvolution, DynNpDifferentialEvolution): |
817
|
|
|
r"""Implementation of Dynamic population size Differential evolution algorithm with dynamic population size that is defined by the quality of population. |
818
|
|
|
|
819
|
|
|
Algorithm: |
820
|
|
|
Dynamic population size Differential evolution algorithm with dynamic population size that is defined by the quality of population |
821
|
|
|
|
822
|
|
|
Date: |
823
|
|
|
2018 |
824
|
|
|
|
825
|
|
|
Author: |
826
|
|
|
Klemen Berkovič |
827
|
|
|
|
828
|
|
|
License: |
829
|
|
|
MIT |
830
|
|
|
|
831
|
|
|
Attributes: |
832
|
|
|
Name (List[str]): List of strings representing algorithm name. |
833
|
|
|
|
834
|
|
|
See Also: |
835
|
|
|
* :class:`NiaPy.algorithms.basic.MultiStrategyDifferentialEvolution` |
836
|
|
|
* :class:`NiaPy.algorithms.basic.DynNpDifferentialEvolution` |
837
|
|
|
""" |
838
|
|
|
Name = ['DynNpMultiStrategyDifferentialEvolution', 'dynNpMsDE'] |
839
|
|
|
|
840
|
|
|
@staticmethod |
841
|
|
|
def typeParameters(): |
842
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
843
|
|
|
|
844
|
|
|
Returns: |
845
|
|
|
Dict[str, Callable]: |
846
|
|
|
* rp (Callable[[Union[float, int]], bool]): TODO |
847
|
|
|
* pmax (Callable[[int], bool]): TODO |
848
|
|
|
|
849
|
|
|
See Also: |
850
|
|
|
* :func:`NiaPy.algorithms.basic.MultiStrategyDifferentialEvolution.typeParameters` |
851
|
|
|
""" |
852
|
|
|
r = MultiStrategyDifferentialEvolution.typeParameters() |
853
|
|
|
r['rp'] = lambda x: isinstance(x, (float, int)) and x > 0 |
854
|
|
|
r['pmax'] = lambda x: isinstance(x, int) and x > 0 |
855
|
|
|
return r |
856
|
|
|
|
857
|
|
|
def setParameters(self, **ukwargs): |
858
|
|
|
r"""Set the arguments of the algorithm. |
859
|
|
|
|
860
|
|
|
Args: |
861
|
|
|
ukwargs (Dict[str, Any]): Additional arguments. |
862
|
|
|
|
863
|
|
|
See Also: |
864
|
|
|
* :func:`NiaPy.algorithms.basic.MultiStrategyDifferentialEvolution.setParameters` |
865
|
|
|
* :func:`NiaPy.algorithms.basic.DynNpDifferentialEvolution.setParameters` |
866
|
|
|
""" |
867
|
|
|
DynNpDifferentialEvolution.setParameters(self, **ukwargs) |
868
|
|
|
MultiStrategyDifferentialEvolution.setParameters(self, **ukwargs) |
869
|
|
|
|
870
|
|
|
def postSelection(self, pop, task, **kwargs): |
871
|
|
|
r"""Post selection operator. |
872
|
|
|
|
873
|
|
|
Args: |
874
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
875
|
|
|
task (Task): Optimization task. |
876
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
877
|
|
|
|
878
|
|
|
Returns: |
879
|
|
|
numpy.ndarray: New population. |
880
|
|
|
|
881
|
|
|
See Also: |
882
|
|
|
* :func:`NiaPy.algorithms.basic.DynNpDifferentialEvolution.postSelection` |
883
|
|
|
""" |
884
|
|
|
return DynNpDifferentialEvolution.postSelection(self, pop, task) |
885
|
|
|
|
886
|
|
|
class AgingNpMultiMutationDifferentialEvolution(AgingNpDifferentialEvolution, MultiStrategyDifferentialEvolution): |
887
|
|
|
r"""Implementation of Differential evolution algorithm with aging individuals. |
888
|
|
|
|
889
|
|
|
Algorithm: |
890
|
|
|
Differential evolution algorithm with dynamic population size that is defined by the quality of population |
891
|
|
|
|
892
|
|
|
Date: |
893
|
|
|
2018 |
894
|
|
|
|
895
|
|
|
Author: |
896
|
|
|
Klemen Berkovič |
897
|
|
|
|
898
|
|
|
License: |
899
|
|
|
MIT |
900
|
|
|
|
901
|
|
|
Attributes: |
902
|
|
|
Name (List[str]): List of strings representing algorithm names |
903
|
|
|
|
904
|
|
|
See Also: |
905
|
|
|
* :class:`NiaPy.algorithms.basic.AgingNpDifferentialEvolution` |
906
|
|
|
* :class:`NiaPy.algorithms.basic.MultiStrategyDifferentialEvolution` |
907
|
|
|
""" |
908
|
|
|
Name = ['AgingNpMultiMutationDifferentialEvolution', 'ANpMSDE'] |
909
|
|
|
|
910
|
|
|
@staticmethod |
911
|
|
|
def typeParameters(): |
912
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
913
|
|
|
|
914
|
|
|
Returns: |
915
|
|
|
Dict[str, Callable]: |
916
|
|
|
* rp (Callable[[Union[float, int]], bool]): TODO |
917
|
|
|
* pmax (Callable[[int], bool]): TODO |
918
|
|
|
|
919
|
|
|
See Also: |
920
|
|
|
* :func:`NiaPy.algorithms.basic.MultiStrategyDifferentialEvolution.typeParameters` |
921
|
|
|
""" |
922
|
|
|
r = AgingNpDifferentialEvolution.typeParameters() |
923
|
|
|
# TODO add other parameters to data check list |
924
|
|
|
return r |
925
|
|
|
|
926
|
|
|
def setParameters(self, **ukwargs): |
927
|
|
|
r"""Set core parameter arguments. |
928
|
|
|
|
929
|
|
|
Args: |
930
|
|
|
**ukwargs (Dict[str, Any]): Additional arguments. |
931
|
|
|
|
932
|
|
|
See Also: |
933
|
|
|
* :func:`NiaPy.algorithms.basic.AgingNpDifferentialEvolution.setParameters` |
934
|
|
|
* :func:`NiaPy.algorithms.basic.MultiStrategyDifferentialEvolution.setParameters` |
935
|
|
|
""" |
936
|
|
|
AgingNpDifferentialEvolution.setParameters(self, **ukwargs) |
937
|
|
|
MultiStrategyDifferentialEvolution.setParameters(self, stratgeys=(CrossRand1, CrossBest1, CrossCurr2Rand1, CrossRand2), itype=AgingIndividual, **ukwargs) |
938
|
|
|
|
939
|
|
|
def evolve(self, pop, xb, task, **kwargs): |
940
|
|
|
r"""Evolve current population. |
941
|
|
|
|
942
|
|
|
Args: |
943
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
944
|
|
|
xb (Individual): Global best individual. |
945
|
|
|
task (Task): Optimization task. |
946
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
947
|
|
|
|
948
|
|
|
Returns: |
949
|
|
|
numpy.ndarray[Individual]: New population of individuals. |
950
|
|
|
""" |
951
|
|
|
return MultiStrategyDifferentialEvolution.evolve(self, pop, xb, task, **kwargs) |
952
|
|
|
|
953
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
954
|
|
|
|