|
1
|
|
|
# encoding=utf8 |
|
2
|
|
|
# pylint: disable=mixed-indentation, line-too-long, multiple-statements, too-many-function-args, singleton-comparison, bad-continuation |
|
3
|
|
|
"""Python micro framework for building nature-inspired algorithms.""" |
|
4
|
|
|
|
|
5
|
|
|
from __future__ import print_function # for backward compatibility purpose |
|
6
|
|
|
|
|
7
|
|
|
import os |
|
8
|
|
|
import logging |
|
9
|
|
|
import json |
|
10
|
|
|
import datetime |
|
11
|
|
|
import xlsxwriter |
|
12
|
|
|
from numpy import amin, amax, median, mean, std |
|
13
|
|
|
from NiaPy import benchmarks, util, algorithms |
|
14
|
|
|
from NiaPy.algorithms import basic as balgos, modified as malgos, other as oalgos |
|
15
|
|
|
|
|
16
|
|
|
__all__ = ['algorithms', 'benchmarks', 'util'] |
|
17
|
|
|
__project__ = 'NiaPy' |
|
18
|
|
|
__version__ = '2.0.0rc4' |
|
19
|
|
|
|
|
20
|
|
|
VERSION = "{0} v{1}".format(__project__, __version__) |
|
21
|
|
|
|
|
22
|
|
|
logging.basicConfig() |
|
23
|
|
|
logger = logging.getLogger('NiaPy') |
|
24
|
|
|
logger.setLevel('INFO') |
|
25
|
|
|
|
|
26
|
|
|
NiaPyAlgos = [ |
|
27
|
|
|
balgos.BatAlgorithm, |
|
28
|
|
|
balgos.DifferentialEvolution, |
|
29
|
|
|
balgos.CrowdingDifferentialEvolution, |
|
30
|
|
|
balgos.DynNpDifferentialEvolution, |
|
31
|
|
|
balgos.AgingNpDifferentialEvolution, |
|
32
|
|
|
balgos.MultiStrategyDifferentialEvolution, |
|
33
|
|
|
balgos.DynNpMultiStrategyDifferentialEvolution, |
|
34
|
|
|
balgos.AgingNpMultiMutationDifferentialEvolution, |
|
35
|
|
|
balgos.FireflyAlgorithm, |
|
36
|
|
|
balgos.FlowerPollinationAlgorithm, |
|
37
|
|
|
balgos.GreyWolfOptimizer, |
|
38
|
|
|
balgos.ArtificialBeeColonyAlgorithm, |
|
39
|
|
|
balgos.GeneticAlgorithm, |
|
40
|
|
|
balgos.ParticleSwarmAlgorithm, |
|
41
|
|
|
balgos.CamelAlgorithm, |
|
42
|
|
|
balgos.BareBonesFireworksAlgorithm, |
|
43
|
|
|
balgos.MonkeyKingEvolutionV1, |
|
44
|
|
|
balgos.MonkeyKingEvolutionV2, |
|
45
|
|
|
balgos.MonkeyKingEvolutionV3, |
|
46
|
|
|
balgos.EvolutionStrategy1p1, |
|
47
|
|
|
balgos.EvolutionStrategyMp1, |
|
48
|
|
|
balgos.EvolutionStrategyMpL, |
|
49
|
|
|
balgos.SineCosineAlgorithm, |
|
50
|
|
|
balgos.HarmonySearch, |
|
51
|
|
|
balgos.HarmonySearchV1, |
|
52
|
|
|
balgos.GlowwormSwarmOptimization, |
|
53
|
|
|
balgos.GlowwormSwarmOptimizationV1, |
|
54
|
|
|
balgos.GlowwormSwarmOptimizationV2, |
|
55
|
|
|
balgos.GlowwormSwarmOptimizationV3, |
|
56
|
|
|
balgos.KrillHerdV1, |
|
57
|
|
|
balgos.KrillHerdV2, |
|
58
|
|
|
balgos.KrillHerdV3, |
|
59
|
|
|
balgos.KrillHerdV4, |
|
60
|
|
|
balgos.KrillHerdV11, |
|
61
|
|
|
balgos.FireworksAlgorithm, |
|
62
|
|
|
balgos.EnhancedFireworksAlgorithm, |
|
63
|
|
|
balgos.DynamicFireworksAlgorithm, |
|
64
|
|
|
balgos.DynamicFireworksAlgorithmGauss, |
|
65
|
|
|
balgos.GravitationalSearchAlgorithm, |
|
66
|
|
|
balgos.FishSchoolSearch, |
|
67
|
|
|
balgos.MothFlameOptimizer, |
|
68
|
|
|
balgos.CuckooSearch, |
|
69
|
|
|
balgos.CovarianceMatrixAdaptionEvolutionStrategy, |
|
70
|
|
|
balgos.CoralReefsOptimization, |
|
71
|
|
|
balgos.ForestOptimizationAlgorithm |
|
72
|
|
|
] |
|
73
|
|
|
|
|
74
|
|
|
NiaPyAlgos += [ |
|
75
|
|
|
malgos.HybridBatAlgorithm, |
|
76
|
|
|
malgos.DifferentialEvolutionMTS, |
|
77
|
|
|
malgos.DifferentialEvolutionMTSv1, |
|
78
|
|
|
malgos.DynNpDifferentialEvolutionMTS, |
|
79
|
|
|
malgos.DynNpDifferentialEvolutionMTSv1, |
|
80
|
|
|
malgos.MultiStrategyDifferentialEvolutionMTS, |
|
81
|
|
|
malgos.MultiStrategyDifferentialEvolutionMTSv1, |
|
82
|
|
|
malgos.DynNpMultiStrategyDifferentialEvolutionMTS, |
|
83
|
|
|
malgos.DynNpMultiStrategyDifferentialEvolutionMTSv1, |
|
84
|
|
|
malgos.SelfAdaptiveDifferentialEvolution, |
|
85
|
|
|
malgos.DynNpSelfAdaptiveDifferentialEvolutionAlgorithm, |
|
86
|
|
|
malgos.MultiStrategySelfAdaptiveDifferentialEvolution, |
|
87
|
|
|
malgos.DynNpMultiStrategySelfAdaptiveDifferentialEvolution |
|
88
|
|
|
] |
|
89
|
|
|
|
|
90
|
|
|
NiaPyAlgos += [ |
|
91
|
|
|
oalgos.MultipleTrajectorySearch, |
|
92
|
|
|
oalgos.MultipleTrajectorySearchV1, |
|
93
|
|
|
oalgos.NelderMeadMethod, |
|
94
|
|
|
oalgos.HillClimbAlgorithm, |
|
95
|
|
|
oalgos.SimulatedAnnealing, |
|
96
|
|
|
oalgos.AnarchicSocietyOptimization, |
|
97
|
|
|
# oalgos.TabuSearch |
|
98
|
|
|
] |
|
99
|
|
|
|
|
100
|
|
|
class Runner: |
|
101
|
|
|
r"""Runner utility feature. |
|
102
|
|
|
|
|
103
|
|
|
Feature which enables running multiple algorithms with multiple benchmarks. |
|
104
|
|
|
It also support exporting results in various formats (e.g. LaTeX, Excel, JSON) |
|
105
|
|
|
|
|
106
|
|
|
Attributes: |
|
107
|
|
|
D (int): Dimension of problem |
|
108
|
|
|
NP (int): Population size |
|
109
|
|
|
nFES (int): Number of function evaluations |
|
110
|
|
|
nRuns (int): Number of repetitions |
|
111
|
|
|
useAlgorithms (list of Algorithm): List of algorithms to run |
|
112
|
|
|
useBenchmarks (list of Benchmarks): List of benchmarks to run |
|
113
|
|
|
results (): TODO |
|
114
|
|
|
""" |
|
115
|
|
|
def __init__(self, D=10, nFES=1000000, nGEN=100000, useAlgorithms='ArtificialBeeColonyAlgorithm', useBenchmarks='Ackley', **kwargs): |
|
116
|
|
|
r"""Initialize Runner. |
|
117
|
|
|
|
|
118
|
|
|
**__init__(self, D, NP, nFES, nRuns, useAlgorithms, useBenchmarks, ...)** |
|
119
|
|
|
|
|
120
|
|
|
Arguments: |
|
121
|
|
|
D (int): Dimension of problem |
|
122
|
|
|
NP (int): Population size |
|
123
|
|
|
nFES (int): Number of function evaluations |
|
124
|
|
|
nRuns (int): Number of repetitions |
|
125
|
|
|
useAlgorithms (list of Algorithm): List of algorithms to run |
|
126
|
|
|
useBenchmarks (list of Benchmarks): List of benchmarks to run |
|
127
|
|
|
|
|
128
|
|
|
Keyword Args: |
|
129
|
|
|
A (float): Laudness |
|
130
|
|
|
r (float): Pulse rate |
|
131
|
|
|
Qmin (float): Minimum frequency |
|
132
|
|
|
Qmax (float): Maximum frequency |
|
133
|
|
|
Pa (float): Probability |
|
134
|
|
|
F (float): Scalling factor |
|
135
|
|
|
F_l (float): Lower limit of scalling factor |
|
136
|
|
|
F_u (float): Upper limit of scalling factor |
|
137
|
|
|
CR (float): Crossover rate |
|
138
|
|
|
alpha (float): Alpha parameter |
|
139
|
|
|
betamin (float): Betamin parameter |
|
140
|
|
|
gamma (float): Gamma parameter |
|
141
|
|
|
p (float): Probability switch |
|
142
|
|
|
Ts (float): Tournament selection |
|
143
|
|
|
Mr (float): Mutation rate |
|
144
|
|
|
C1 (float): Cognitive component |
|
145
|
|
|
C2 (float): Social component |
|
146
|
|
|
w (float): Inertia weight |
|
147
|
|
|
vMin (float): Minimal velocity |
|
148
|
|
|
vMax (float): Maximal velocity |
|
149
|
|
|
Tao1 (float): Probability |
|
150
|
|
|
Tao2 (float): Probability |
|
151
|
|
|
n (int): Number of sparks |
|
152
|
|
|
mu (float): Mu parameter |
|
153
|
|
|
omega (float): TODO |
|
154
|
|
|
S_init (float): Initial supply for camel |
|
155
|
|
|
E_init (float): Initial endurance for camel |
|
156
|
|
|
T_min (float): Minimal temperature |
|
157
|
|
|
T_max (float): Maximal temperature |
|
158
|
|
|
C_a (float): Amplification factor |
|
159
|
|
|
C_r (float): Reduction factor |
|
160
|
|
|
Limit (int): Limit |
|
161
|
|
|
k (int): Number of runs before adaptive |
|
162
|
|
|
""" |
|
163
|
|
|
self.D = D |
|
164
|
|
|
self.nFES = nFES |
|
165
|
|
|
self.nGEN = nGEN |
|
166
|
|
|
self.useAlgorithms = useAlgorithms |
|
167
|
|
|
self.useBenchmarks = useBenchmarks |
|
168
|
|
|
self.args = kwargs |
|
169
|
|
|
self.results = {} |
|
170
|
|
|
|
|
171
|
|
|
@staticmethod |
|
172
|
|
|
def getAlgorithm(name): |
|
173
|
|
|
r"""Get algorithm for optimization. |
|
174
|
|
|
|
|
175
|
|
|
Args: |
|
176
|
|
|
name (str): Name of the algorithm |
|
177
|
|
|
|
|
178
|
|
|
Returns: |
|
179
|
|
|
Algorithm: TODO |
|
180
|
|
|
""" |
|
181
|
|
|
algorithm = None |
|
182
|
|
|
for alg in NiaPyAlgos: |
|
183
|
|
|
if name in alg.Name: algorithm = alg; break |
|
184
|
|
|
if algorithm == None: raise TypeError('Passed algorithm is not defined!') |
|
185
|
|
|
return algorithm |
|
186
|
|
|
|
|
187
|
|
|
def benchmarkFactory(self, name): |
|
188
|
|
|
r"""Create optimization task. |
|
189
|
|
|
|
|
190
|
|
|
Args: |
|
191
|
|
|
name (str): Benchmark name. |
|
192
|
|
|
|
|
193
|
|
|
Returns: |
|
194
|
|
|
Task: Optimization task to use. |
|
195
|
|
|
""" |
|
196
|
|
|
return util.Task(D=self.D, nFES=self.nFES, nGEN=self.nGEN, optType=util.OptimizationType.MINIMIZATION, benchmark=name) |
|
197
|
|
|
|
|
198
|
|
|
def algorithmFactory(self, name): |
|
199
|
|
|
r"""TODO. |
|
200
|
|
|
|
|
201
|
|
|
Args: |
|
202
|
|
|
name (str): Name of algorithm. |
|
203
|
|
|
|
|
204
|
|
|
Returns: |
|
205
|
|
|
Algorithm: Initialized algorithm with parameters. |
|
206
|
|
|
""" |
|
207
|
|
|
algorithm, params = Runner.getAlgorithm(name), dict() |
|
208
|
|
|
for k, v in algorithm.typeParameters().items(): |
|
209
|
|
|
val = self.args.get(k, None) |
|
210
|
|
|
if val != None and v(val): params[k] = val |
|
211
|
|
|
return algorithm(**params) |
|
212
|
|
|
|
|
213
|
|
|
@classmethod |
|
214
|
|
|
def __createExportDir(cls): |
|
215
|
|
|
r"""TODO.""" |
|
216
|
|
|
if not os.path.exists('export'): os.makedirs('export') |
|
217
|
|
|
|
|
218
|
|
|
@classmethod |
|
219
|
|
|
def __generateExportName(cls, extension): |
|
220
|
|
|
r"""TODO. |
|
221
|
|
|
|
|
222
|
|
|
Args: |
|
223
|
|
|
extension: |
|
224
|
|
|
|
|
225
|
|
|
Returns: |
|
226
|
|
|
|
|
227
|
|
|
""" |
|
228
|
|
|
return 'export/' + str(datetime.datetime.now()).replace(':', '.') + '.' + extension |
|
229
|
|
|
|
|
230
|
|
|
def __exportToLog(self): |
|
231
|
|
|
r"""TODO.""" |
|
232
|
|
|
print(self.results) |
|
233
|
|
|
|
|
234
|
|
|
def __exportToJson(self): |
|
235
|
|
|
r"""TODO. |
|
236
|
|
|
|
|
237
|
|
|
See Also: |
|
238
|
|
|
* :func:`NiaPy.Runner.__createExportDir` |
|
239
|
|
|
""" |
|
240
|
|
|
self.__createExportDir() |
|
241
|
|
|
with open(self.__generateExportName('json'), 'w') as outFile: |
|
242
|
|
|
json.dump(self.results, outFile) |
|
243
|
|
|
logger.info('Export to JSON completed!') |
|
244
|
|
|
|
|
245
|
|
|
def __exportToXls(self): |
|
246
|
|
|
r"""TODO. |
|
247
|
|
|
|
|
248
|
|
|
See Also: |
|
249
|
|
|
:func:`NiaPy.Runner.__generateExportName` |
|
250
|
|
|
""" |
|
251
|
|
|
self.__createExportDir() |
|
252
|
|
|
workbook = xlsxwriter.Workbook(self.__generateExportName('xlsx')) |
|
253
|
|
|
worksheet = workbook.add_worksheet() |
|
254
|
|
|
row, col, nRuns = 0, 0, 0 |
|
255
|
|
|
for alg in self.results: |
|
256
|
|
|
_, col = worksheet.write(row, col, alg), col + 1 |
|
257
|
|
|
for bench in self.results[alg]: |
|
258
|
|
|
worksheet.write(row, col, bench) |
|
259
|
|
|
nRuns = len(self.results[alg][bench]) |
|
260
|
|
|
for i in range(len(self.results[alg][bench])): _, row = worksheet.write(row, col, self.results[alg][bench][i]), row + 1 |
|
261
|
|
|
row, col = row - len(self.results[alg][bench]), col + 1 |
|
262
|
|
|
row, col = row + 1 + nRuns, col - 1 + len(self.results[alg]) |
|
263
|
|
|
workbook.close() |
|
264
|
|
|
logger.info('Export to XLSX completed!') |
|
265
|
|
|
|
|
266
|
|
|
def __exportToLatex(self): |
|
267
|
|
|
r"""TODO. |
|
268
|
|
|
|
|
269
|
|
|
See Also: |
|
270
|
|
|
:func:`NiaPy.Runner.__createExportDir` |
|
271
|
|
|
:func:`NiaPy.Runner.__generateExportName` |
|
272
|
|
|
""" |
|
273
|
|
|
self.__createExportDir() |
|
274
|
|
|
metrics = ['Best', 'Median', 'Worst', 'Mean', 'Std.'] |
|
275
|
|
|
def only_upper(s): return "".join(c for c in s if c.isupper()) |
|
276
|
|
|
with open(self.__generateExportName('tex'), 'a') as outFile: |
|
277
|
|
|
outFile.write('\\documentclass{article}\n') |
|
278
|
|
|
outFile.write('\\usepackage[utf8]{inputenc}\n') |
|
279
|
|
|
outFile.write('\\usepackage{siunitx}\n') |
|
280
|
|
|
outFile.write('\\sisetup{\n') |
|
281
|
|
|
outFile.write('round-mode=places,round-precision=3}\n') |
|
282
|
|
|
outFile.write('\\begin{document}\n') |
|
283
|
|
|
outFile.write('\\begin{table}[h]\n') |
|
284
|
|
|
outFile.write('\\centering\n') |
|
285
|
|
|
begin_tabular = '\\begin{tabular}{cc' |
|
286
|
|
|
for alg in self.results: |
|
287
|
|
|
for _i in range(len(self.results[alg])): begin_tabular += 'S' |
|
288
|
|
|
firstLine = ' &' |
|
289
|
|
|
for benchmark in self.results[alg].keys(): firstLine += ' & \\multicolumn{1}{c}{\\textbf{' + benchmark + '}}' |
|
290
|
|
|
firstLine += ' \\\\' |
|
291
|
|
|
break |
|
292
|
|
|
begin_tabular += '}\n' |
|
293
|
|
|
outFile.write(begin_tabular) |
|
294
|
|
|
outFile.write('\\hline\n') |
|
295
|
|
|
outFile.write(firstLine + '\n') |
|
|
|
|
|
|
296
|
|
|
outFile.write('\\hline\n') |
|
297
|
|
|
for alg in self.results: |
|
298
|
|
|
for metric in metrics: |
|
299
|
|
|
line = '' |
|
300
|
|
|
if metric != 'Worst': line += ' & ' + metric |
|
301
|
|
|
else: |
|
302
|
|
|
shortAlg = '' |
|
303
|
|
|
if alg.endswith('Algorithm'): shortAlg = only_upper(alg[:-9]) |
|
304
|
|
|
else: shortAlg = only_upper(alg) |
|
305
|
|
|
line += '\\textbf{' + shortAlg + '} & ' + metric |
|
306
|
|
|
for benchmark in self.results[alg]: |
|
307
|
|
|
if metric == 'Best': line += ' & ' + str(amin(self.results[alg][benchmark])) |
|
308
|
|
|
elif metric == 'Median': line += ' & ' + str(median(self.results[alg][benchmark])) |
|
309
|
|
|
elif metric == 'Worst': line += ' & ' + str(amax(self.results[alg][benchmark])) |
|
310
|
|
|
elif metric == 'Mean': line += ' & ' + str(mean(self.results[alg][benchmark])) |
|
311
|
|
|
else: line += ' & ' + str(std(self.results[alg][benchmark])) |
|
312
|
|
|
line += ' \\\\' |
|
313
|
|
|
outFile.write(line + '\n') |
|
314
|
|
|
outFile.write('\\hline\n') |
|
315
|
|
|
outFile.write('\\end{tabular}\n') |
|
316
|
|
|
outFile.write('\\end{table}\n') |
|
317
|
|
|
outFile.write('\\end{document}') |
|
318
|
|
|
logger.info('Export to Latex completed!') |
|
319
|
|
|
|
|
320
|
|
|
def run(self, export='log', verbose=False): |
|
321
|
|
|
"""Execute runner. |
|
322
|
|
|
|
|
323
|
|
|
Arguments: |
|
324
|
|
|
export (str): Takes export type (e.g. log, json, xlsx, latex) (default: 'log') |
|
325
|
|
|
verbose (bool: Switch for verbose logging (default: {False}) |
|
326
|
|
|
|
|
327
|
|
|
Raises: |
|
328
|
|
|
TypeError: Raises TypeError if export type is not supported |
|
329
|
|
|
|
|
330
|
|
|
Returns: |
|
331
|
|
|
dict: Returns dictionary of results |
|
332
|
|
|
|
|
333
|
|
|
See Also: |
|
334
|
|
|
* :func:`NiaPy.Runner.useAlgorithms` |
|
335
|
|
|
* :func:`NiaPy.Runner.useBenchmarks` |
|
336
|
|
|
* :func:`NiaPy.Runner.__algorithmFactory` |
|
337
|
|
|
""" |
|
338
|
|
|
for alg in self.useAlgorithms: |
|
339
|
|
|
self.results[alg] = {} |
|
340
|
|
|
if verbose: logger.info('Running %s...', alg) |
|
341
|
|
|
for bench in self.useBenchmarks: |
|
342
|
|
|
benchName = '' |
|
343
|
|
|
if not isinstance(bench, ''.__class__): benchName = str(type(bench).__name__) |
|
344
|
|
|
else: benchName = bench |
|
345
|
|
|
if verbose: logger.info('Running %s algorithm on %s benchmark...', alg, benchName) |
|
346
|
|
|
bm = self.benchmarkFactory(bench) |
|
347
|
|
|
self.results[alg][benchName] = [] |
|
348
|
|
|
for _ in range(self.nGEN): |
|
349
|
|
|
algorithm = self.algorithmFactory(alg) |
|
350
|
|
|
self.results[alg][benchName].append(algorithm.run(bm)) |
|
351
|
|
|
if verbose: logger.info('---------------------------------------------------') |
|
352
|
|
|
if export == 'log': self.__exportToLog() |
|
353
|
|
|
elif export == 'json': self.__exportToJson() |
|
354
|
|
|
elif export == 'xlsx': self.__exportToXls() |
|
355
|
|
|
elif export == 'latex': self.__exportToLatex() |
|
356
|
|
|
else: raise TypeError('Passed export type is not supported!') |
|
357
|
|
|
return self.results |
|
358
|
|
|
|
|
359
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
|
360
|
|
|
|