| 1 |  |  | # encoding=utf8 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 2 |  |  | import logging | 
            
                                                                                                            
                            
            
                                    
            
            
                | 3 |  |  | from scipy.spatial.distance import euclidean | 
            
                                                                                                            
                            
            
                                    
            
            
                | 4 |  |  | from numpy import apply_along_axis, argmin, full, inf, where, asarray, random as rand, sort, exp | 
            
                                                                                                            
                            
            
                                    
            
            
                | 5 |  |  | from NiaPy.algorithms.algorithm import Algorithm | 
            
                                                                                                            
                            
            
                                    
            
            
                | 6 |  |  | from NiaPy.util import fullArray | 
            
                                                                                                            
                            
            
                                    
            
            
                | 7 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 8 |  |  | logging.basicConfig() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 9 |  |  | logger = logging.getLogger('NiaPy.algorithms.other') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 10 |  |  | logger.setLevel('INFO') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 11 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 12 |  |  | __all__ = ['AnarchicSocietyOptimization', 'Elitism', 'Sequential', 'Crossover'] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 13 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 14 |  |  | def Elitism(x, xpb, xb, xr, MP_c, MP_s, MP_p, F, CR, task, rnd=rand): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 15 |  |  | 	r"""Select the best of all three strategies. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 16 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 17 |  |  | 	Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 18 |  |  | 		x (numpy.ndarray): individual position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 19 |  |  | 		xpb (numpy.ndarray): individuals best position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 20 |  |  | 		xb (numpy.ndarray): current best position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 21 |  |  | 		xr (numpy.ndarray): random individual. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 22 |  |  | 		MP_c (float): Fickleness index value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 23 |  |  | 		MP_s (float): External irregularity index value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 24 |  |  | 		MP_p (float): Internal irregularity index value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 25 |  |  | 		F (float): scale factor. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 26 |  |  | 		CR (float): crossover factor. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 27 |  |  | 		task (Task): optimization task. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 28 |  |  | 		rnd (mtrand.randomstate): random number generator. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 29 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 30 |  |  | 	Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 31 |  |  | 		Tuple[numpy.ndarray, float]: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 32 |  |  | 			1. New position of individual | 
            
                                                                                                            
                            
            
                                    
            
            
                | 33 |  |  | 			2. New positions fitness/function value | 
            
                                                                                                            
                            
            
                                    
            
            
                | 34 |  |  | 	""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 35 |  |  | 	xn = [task.repair(MP_C(x, F, CR, MP_c, rnd), rnd=rnd), task.repair(MP_S(x, xr, xb, CR, MP_s, rnd), rnd=rnd), task.repair(MP_P(x, xpb, CR, MP_p, rnd), rnd=rnd)] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 36 |  |  | 	xn_f = apply_along_axis(task.eval, 1, xn) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 37 |  |  | 	ib = argmin(xn_f) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 38 |  |  | 	return xn[ib], xn_f[ib] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 39 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 40 |  |  | def Sequential(x, xpb, xb, xr, MP_c, MP_s, MP_p, F, CR, task, rnd=rand): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 41 |  |  | 	r"""Sequentialy combines all three strategies. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 42 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 43 |  |  | 	Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 44 |  |  | 		x (numpy.ndarray): individual position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 45 |  |  | 		xpb (numpy.ndarray): individuals best position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 46 |  |  | 		xb (numpy.ndarray): current best position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 47 |  |  | 		xr (numpy.ndarray): random individual. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 48 |  |  | 		MP_c (float): Fickleness index value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 49 |  |  | 		MP_s (float): External irregularity index value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 50 |  |  | 		MP_p (float): Internal irregularity index value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 51 |  |  | 		F (float): scale factor. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 52 |  |  | 		CR (float): crossover factor. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 53 |  |  | 		task (Task): optimization task. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 54 |  |  | 		rnd (mtrand.randomstate): random number generator. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 55 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 56 |  |  | 	Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 57 |  |  | 		tuple[numpy.ndarray, float]: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 58 |  |  | 			1. new position | 
            
                                                                                                            
                            
            
                                    
            
            
                | 59 |  |  | 			2. new positions function/fitness value | 
            
                                                                                                            
                            
            
                                    
            
            
                | 60 |  |  | 	""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 61 |  |  | 	xn = task.repair(MP_S(MP_P(MP_C(x, F, CR, MP_c, rnd), xpb, CR, MP_p, rnd), xr, xb, CR, MP_s, rnd), rnd=rnd) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 62 |  |  | 	return xn, task.eval(xn) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 63 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 64 |  |  | def Crossover(x, xpb, xb, xr, MP_c, MP_s, MP_p, F, CR, task, rnd=rand): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 65 |  |  | 	r"""Create a crossover over all three strategies. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 66 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 67 |  |  | 	Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 68 |  |  | 		x (numpy.ndarray): individual position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 69 |  |  | 		xpb (numpy.ndarray): individuals best position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 70 |  |  | 		xb (numpy.ndarray): current best position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 71 |  |  | 		xr (numpy.ndarray): random individual. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 72 |  |  | 		MP_c (float): Fickleness index value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 73 |  |  | 		MP_s (float): External irregularity index value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 74 |  |  | 		MP_p (float): Internal irregularity index value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 75 |  |  | 		F (float): scale factor. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 76 |  |  | 		CR (float): crossover factor. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 77 |  |  | 		task (Task): optimization task. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 78 |  |  | 		rnd (mtrand.randomstate): random number generator. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 79 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 80 |  |  | 	Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 81 |  |  | 		Tuple[numpy.ndarray, float]: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 82 |  |  | 			1. new position | 
            
                                                                                                            
                            
            
                                    
            
            
                | 83 |  |  | 			2. new positions function/fitness value | 
            
                                                                                                            
                            
            
                                    
            
            
                | 84 |  |  | 	""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 85 |  |  | 	xns = [task.repair(MP_C(x, F, CR, MP_c, rnd), rnd=rnd), task.repair(MP_S(x, xr, xb, CR, MP_s, rnd), rnd=rnd), task.repair(MP_P(x, xpb, CR, MP_p, rnd), rnd=rnd)] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 86 |  |  | 	x = asarray([xns[rnd.randint(len(xns))][i] if rnd.rand() < CR else x[i] for i in range(len(x))]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 87 |  |  | 	return x, task.eval(x) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 88 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 89 |  |  | def MP_C(x, F, CR, MP, rnd=rand): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 90 |  |  | 	r"""Get bew position based on fickleness. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 91 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 92 |  |  | 	Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 93 |  |  | 		x (numpy.ndarray): Current individuals position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 94 |  |  | 		F (float): Scale factor. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 95 |  |  | 		CR (float): Crossover probability. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 96 |  |  | 		MP (float): Fickleness index value | 
            
                                                                                                            
                            
            
                                    
            
            
                | 97 |  |  | 		rnd (mtrand.RandomState): Random number generator | 
            
                                                                                                            
                            
            
                                    
            
            
                | 98 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 99 |  |  | 	Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 100 |  |  | 		numpy.ndarray: New position | 
            
                                                                                                            
                            
            
                                    
            
            
                | 101 |  |  | 	""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 102 |  |  | 	if MP < 0.5: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 103 |  |  | 		b = sort(rnd.choice(len(x), 2, replace=False)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 104 |  |  | 		x[b[0]:b[1]] = x[b[0]:b[1]] + F * rnd.normal(0, 1, b[1] - b[0]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 105 |  |  | 		return x | 
            
                                                                                                            
                            
            
                                    
            
            
                | 106 |  |  | 	return asarray([x[i] + F * rnd.normal(0, 1) if rnd.rand() < CR else x[i] for i in range(len(x))]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 107 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 108 |  |  | def MP_S(x, xr, xb, CR, MP, rnd=rand): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 109 |  |  | 	r"""Get new position based on external irregularity. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 110 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 111 |  |  | 	Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 112 |  |  | 		x (numpy.ndarray): Current individuals position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 113 |  |  | 		xr (numpy.ndarray): Random individuals position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 114 |  |  | 		xb (numpy.ndarray): Global best individuals position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 115 |  |  | 		CR (float): Crossover probability. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 116 |  |  | 		MP (float): External irregularity index. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 117 |  |  | 		rnd (mtrand.RandomState): Random number generator. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 118 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 119 |  |  | 	Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 120 |  |  | 		numpy.ndarray: New position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 121 |  |  | 	""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 122 |  |  | 	if MP < 0.25: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 123 |  |  | 		b = sort(rnd.choice(len(x), 2, replace=False)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 124 |  |  | 		x[b[0]:b[1]] = xb[b[0]:b[1]] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 125 |  |  | 		return x | 
            
                                                                                                            
                            
            
                                    
            
            
                | 126 |  |  | 	elif MP < 0.5: return asarray([xb[i] if rnd.rand() < CR else x[i] for i in range(len(x))]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 127 |  |  | 	elif MP < 0.75: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 128 |  |  | 		b = sort(rnd.choice(len(x), 2, replace=False)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 129 |  |  | 		x[b[0]:b[1]] = xr[b[0]:b[1]] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 130 |  |  | 		return x | 
            
                                                                                                            
                            
            
                                    
            
            
                | 131 |  |  | 	return asarray([xr[i] if rnd.rand() < CR else x[i] for i in range(len(x))]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 132 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 133 |  |  | def MP_P(x, xpb, CR, MP, rnd=rand): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 134 |  |  | 	r"""Get new position based on internal irregularity. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 135 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 136 |  |  | 	Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 137 |  |  | 		x (numpy.ndarray): Current individuals position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 138 |  |  | 		xpb (numpy.ndarray): Current individuals personal best position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 139 |  |  | 		CR (float): Crossover probability. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 140 |  |  | 		MP (float): Internal irregularity index value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 141 |  |  | 		rnd (mtrand.RandomState): Random number generator. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 142 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 143 |  |  | 	Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 144 |  |  | 		numpy.ndarray: Current individuals new position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 145 |  |  | 	""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 146 |  |  | 	if MP < 0.5: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 147 |  |  | 		b = sort(rnd.choice(len(x), 2, replace=False)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 148 |  |  | 		x[b[0]:b[1]] = xpb[b[0]:b[1]] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 149 |  |  | 		return x | 
            
                                                                                                            
                            
            
                                    
            
            
                | 150 |  |  | 	return asarray([xpb[i] if rnd.rand() < CR else x[i] for i in range(len(x))]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 151 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 152 |  |  | class AnarchicSocietyOptimization(Algorithm): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 153 |  |  | 	r"""Implementation of Anarchic Society Optimization algorithm. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 154 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 155 |  |  | 	Algorithm: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 156 |  |  | 		Anarchic Society Optimization algorithm | 
            
                                                                                                            
                            
            
                                    
            
            
                | 157 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 158 |  |  | 	Date: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 159 |  |  | 		2018 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 160 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 161 |  |  | 	Authors: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 162 |  |  | 		Klemen Berkovič | 
            
                                                                                                            
                            
            
                                    
            
            
                | 163 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 164 |  |  | 	License: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 165 |  |  | 		MIT | 
            
                                                                                                            
                            
            
                                    
            
            
                | 166 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 167 |  |  | 	Reference paper: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 168 |  |  | 		Ahmadi-Javid, Amir. "Anarchic Society Optimization: A human-inspired method." Evolutionary Computation (CEC), 2011 IEEE Congress on. IEEE, 2011. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 169 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 170 |  |  | 	Attributes: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 171 |  |  | 		Name (list of str): List of stings representing name of algorithm. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 172 |  |  | 		alpha (List[float]): Factor for fickleness index function :math:`\in [0, 1]`. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 173 |  |  | 		gamma (List[float]): Factor for external irregularity index function :math:`\in [0, \infty)`. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 174 |  |  | 		theta (List[float]): Factor for internal irregularity index function :math:`\in [0, \infty)`. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 175 |  |  | 		d (Callable[[float, float], float]): function that takes two arguments that are function values and calcs the distance between them. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 176 |  |  | 		dn (Callable[[numpy.ndarray, numpy.ndarray], float]): function that takes two arguments that are points in function landscape and calcs the distance between them. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 177 |  |  | 		nl (float): Normalized range for neighborhood search :math:`\in (0, 1]`. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 178 |  |  | 		F (float): Mutation parameter. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 179 |  |  | 		CR (float): Crossover parameter :math:`\in [0, 1]`. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 180 |  |  | 		Combination (Callable[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray, float, float, float, float, float, float, Task, mtrand.RandomState]): Function for combining individuals to get new position/individual. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 181 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 182 |  |  | 	See Also: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 183 |  |  | 		* :class:`NiaPy.algorithms.Algorithm` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 184 |  |  | 	""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 185 |  |  | 	Name = ['AnarchicSocietyOptimization', 'ASO'] | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 186 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 187 |  |  | 	@staticmethod | 
            
                                                                        
                            
            
                                    
            
            
                | 188 |  |  | 	def algorithmInfo(): | 
            
                                                                        
                            
            
                                    
            
            
                | 189 |  |  | 		r"""Get basic information about the algorithm. | 
            
                                                                        
                            
            
                                    
            
            
                | 190 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 191 |  |  | 		Returns: | 
            
                                                                        
                            
            
                                    
            
            
                | 192 |  |  | 			str: Basic information. | 
            
                                                                        
                            
            
                                    
            
            
                | 193 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 194 |  |  | 		See Also: | 
            
                                                                        
                            
            
                                    
            
            
                | 195 |  |  | 			:func:`NiaPy.algorithms.algorithm.Algorithm.algorithmInfo` | 
            
                                                                        
                            
            
                                    
            
            
                | 196 |  |  | 		""" | 
            
                                                                        
                            
            
                                    
            
            
                | 197 |  |  | 		return r"""Ahmadi-Javid, Amir. "Anarchic Society Optimization: A human-inspired method." Evolutionary Computation (CEC), 2011 IEEE Congress on. IEEE, 2011.""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 198 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 199 |  |  | 	@staticmethod | 
            
                                                                                                            
                            
            
                                    
            
            
                | 200 |  |  | 	def typeParameters(): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 201 |  |  | 		r"""Get dictionary with functions for checking values of parameters. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 202 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 203 |  |  | 		Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 204 |  |  | 			Dict[str, Callable]: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 205 |  |  | 				* alpha (Callable): TODO | 
            
                                                                                                            
                            
            
                                    
            
            
                | 206 |  |  | 				* gamma (Callable): TODO | 
            
                                                                                                            
                            
            
                                    
            
            
                | 207 |  |  | 				* theta (Callable): TODO | 
            
                                                                                                            
                            
            
                                    
            
            
                | 208 |  |  | 				* nl (Callable): TODO | 
            
                                                                                                            
                            
            
                                    
            
            
                | 209 |  |  | 				* F (Callable[[Union[float, int]], bool]): TODO | 
            
                                                                                                            
                            
            
                                    
            
            
                | 210 |  |  | 				* CR (Callable[[Union[float, int]], bool]): TODO | 
            
                                                                                                            
                            
            
                                    
            
            
                | 211 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 212 |  |  | 		See Also: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 213 |  |  | 			* :func:`NiaPy.algorithms.Algorithm.typeParameters` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 214 |  |  | 		""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 215 |  |  | 		d = Algorithm.typeParameters() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 216 |  |  | 		d.update({ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 217 |  |  | 			'alpha': lambda x: True, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 218 |  |  | 			'gamma': lambda x: True, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 219 |  |  | 			'theta': lambda x: True, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 220 |  |  | 			'nl': lambda x: True, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 221 |  |  | 			'F': lambda x: isinstance(x, (int, float)) and x > 0, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 222 |  |  | 			'CR': lambda x: isinstance(x, float) and 0 <= x <= 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 223 |  |  | 		}) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 224 |  |  | 		return d | 
            
                                                                                                            
                            
            
                                    
            
            
                | 225 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 226 |  |  | 	def setParameters(self, NP=43, alpha=(1, 0.83), gamma=(1.17, 0.56), theta=(0.932, 0.832), d=euclidean, dn=euclidean, nl=1, F=1.2, CR=0.25, Combination=Elitism, **ukwargs): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 227 |  |  | 		r"""Set the parameters for the algorith. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 228 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 229 |  |  | 		Arguments: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 230 |  |  | 			alpha (Optional[List[float]]): Factor for fickleness index function :math:`\in [0, 1]`. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 231 |  |  | 			gamma (Optional[List[float]]): Factor for external irregularity index function :math:`\in [0, \infty)`. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 232 |  |  | 			theta (Optional[List[float]]): Factor for internal irregularity index function :math:`\in [0, \infty)`. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 233 |  |  | 			d (Optional[Callable[[float, float], float]]): function that takes two arguments that are function values and calcs the distance between them. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 234 |  |  | 			dn (Optional[Callable[[numpy.ndarray, numpy.ndarray], float]]): function that takes two arguments that are points in function landscape and calcs the distance between them. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 235 |  |  | 			nl (Optional[float]): Normalized range for neighborhood search :math:`\in (0, 1]`. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 236 |  |  | 			F (Optional[float]): Mutation parameter. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 237 |  |  | 			CR (Optional[float]): Crossover parameter :math:`\in [0, 1]`. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 238 |  |  | 			Combination (Optional[Callable[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray, float, float, float, float, float, float, Task, mtrand.RandomState]]): Function for combining individuals to get new position/individual. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 239 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 240 |  |  | 		See Also: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 241 |  |  | 			* :func:`NiaPy.algorithms.Algorithm.setParameters` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 242 |  |  | 			* Combination methods: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 243 |  |  | 				* :func:`NiaPy.algorithms.other.Elitism` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 244 |  |  | 				* :func:`NiaPy.algorithms.other.Crossover` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 245 |  |  | 				* :func:`NiaPy.algorithms.other.Sequential` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 246 |  |  | 		""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 247 |  |  | 		Algorithm.setParameters(self, NP=NP, **ukwargs) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 248 |  |  | 		self.alpha, self.gamma, self.theta, self.d, self.dn, self.nl, self.F, self.CR, self.Combination = alpha, gamma, theta, d, dn, nl, F, CR, Combination | 
            
                                                                                                            
                            
            
                                    
            
            
                | 249 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 250 |  |  | 	def init(self, task): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 251 |  |  | 		r"""Initialize dynamic parameters of algorithm. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 252 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 253 |  |  | 		Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 254 |  |  | 			task (Task): Optimization task. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 255 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 256 |  |  | 		Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 257 |  |  | 			Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 258 |  |  | 				1. Array of `self.alpha` propagated values | 
            
                                                                                                            
                            
            
                                    
            
            
                | 259 |  |  | 				2. Array of `self.gamma` propagated values | 
            
                                                                                                            
                            
            
                                    
            
            
                | 260 |  |  | 				3. Array of `self.theta` propagated values | 
            
                                                                                                            
                            
            
                                    
            
            
                | 261 |  |  | 		""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 262 |  |  | 		return fullArray(self.alpha, self.NP), fullArray(self.gamma, self.NP), fullArray(self.theta, self.NP) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 263 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 264 |  |  | 	def FI(self, x_f, xpb_f, xb_f, alpha): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 265 |  |  | 		r"""Get fickleness index. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 266 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 267 |  |  | 		Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 268 |  |  | 			x_f (float): Individuals fitness/function value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 269 |  |  | 			xpb_f (float): Individuals personal best fitness/function value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 270 |  |  | 			xb_f (float): Current best found individuals fitness/function value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 271 |  |  | 			alpha (float): TODO. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 272 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 273 |  |  | 		Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 274 |  |  | 			float: Fickleness index. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 275 |  |  | 		""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 276 |  |  | 		return 1 - alpha * xb_f / x_f - (1 - alpha) * xpb_f / x_f | 
            
                                                                                                            
                            
            
                                    
            
            
                | 277 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 278 |  |  | 	def EI(self, x_f, xnb_f, gamma): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 279 |  |  | 		r"""Get external irregularity index. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 280 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 281 |  |  | 		Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 282 |  |  | 			x_f (float): Individuals fitness/function value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 283 |  |  | 			xnb_f (float): Individuals new fitness/function value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 284 |  |  | 			gamma (float): TODO. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 285 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 286 |  |  | 		Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 287 |  |  | 			float: External irregularity index. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 288 |  |  | 		""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 289 |  |  | 		return 1 - exp(-gamma * self.d(x_f, xnb_f)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 290 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 291 |  |  | 	def II(self, x_f, xpb_f, theta): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 292 |  |  | 		r"""Get internal irregularity index. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 293 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 294 |  |  | 		Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 295 |  |  | 			x_f (float): Individuals fitness/function value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 296 |  |  | 			xpb_f (float): Individuals personal best fitness/function value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 297 |  |  | 			theta (float): TODO. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 298 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 299 |  |  | 		Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 300 |  |  | 			float: Internal irregularity index | 
            
                                                                                                            
                            
            
                                    
            
            
                | 301 |  |  | 		""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 302 |  |  | 		return 1 - exp(-theta * self.d(x_f, xpb_f)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 303 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 304 |  |  | 	def getBestNeighbors(self, i, X, X_f, rs): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 305 |  |  | 		r"""Get neighbors of individual. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 306 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 307 |  |  | 		Mesurment of distance for neighborhud is defined with `self.nl`. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 308 |  |  | 		Function for calculating distances is define with `self.dn`. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 309 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 310 |  |  | 		Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 311 |  |  | 			i (int): Index of individual for hum we are looking for neighbours. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 312 |  |  | 			X (numpy.ndarray): Current population. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 313 |  |  | 			X_f (numpy.ndarray[float]): Current population fitness/function values. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 314 |  |  | 			rs (numpy.ndarray[float]): Distance between individuals. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 315 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 316 |  |  | 		Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 317 |  |  | 			numpy.ndarray[int]: Indexes that represent individuals closest to `i`-th individual. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 318 |  |  | 		""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 319 |  |  | 		nn = asarray([self.dn(X[i], X[j]) / rs for j in range(len(X))]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 320 |  |  | 		return argmin(X_f[where(nn <= self.nl)]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 321 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 322 |  |  | 	def uBestAndPBest(self, X, X_f, Xpb, Xpb_f): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 323 |  |  | 		r"""Update personal best solution of all individuals in population. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 324 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 325 |  |  | 		Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 326 |  |  | 			X (numpy.ndarray): Current population. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 327 |  |  | 			X_f (numpy.ndarray[float]): Current population fitness/function values. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 328 |  |  | 			Xpb (numpy.ndarray): Current population best positions. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 329 |  |  | 			Xpb_f (numpy.ndarray[float]): Current populations best positions fitness/function values. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 330 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 331 |  |  | 		Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 332 |  |  | 			Tuple[numpy.ndarray, numpy.ndarray[float], numpy.ndarray, float]: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 333 |  |  | 				1. New personal best positions for current population. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 334 |  |  | 				2. New personal best positions function/fitness values for current population. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 335 |  |  | 				3. New best individual. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 336 |  |  | 				4. New best individual fitness/function value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 337 |  |  | 		""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 338 |  |  | 		ix_pb = where(X_f < Xpb_f) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 339 |  |  | 		Xpb[ix_pb], Xpb_f[ix_pb] = X[ix_pb], X_f[ix_pb] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 340 |  |  | 		return Xpb, Xpb_f | 
            
                                                                                                            
                            
            
                                    
            
            
                | 341 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 342 |  |  | 	def initPopulation(self, task): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 343 |  |  | 		r"""Initialize first population and additional arguments. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 344 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 345 |  |  | 		Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 346 |  |  | 			task (Task): Optimization task | 
            
                                                                                                            
                            
            
                                    
            
            
                | 347 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 348 |  |  | 		Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 349 |  |  | 			Tuple[numpy.ndarray, numpy.ndarray, dict]: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 350 |  |  | 				1. Initialized population | 
            
                                                                                                            
                            
            
                                    
            
            
                | 351 |  |  | 				2. Initialized population fitness/function values | 
            
                                                                                                            
                            
            
                                    
            
            
                | 352 |  |  | 				3. Dict[str, Any]: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 353 |  |  | 					* Xpb (numpy.ndarray): Initialized populations best positions. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 354 |  |  | 					* Xpb_f (numpy.ndarray): Initialized populations best positions function/fitness values. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 355 |  |  | 					* alpha (numpy.ndarray): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 356 |  |  | 					* gamma (numpy.ndarray): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 357 |  |  | 					* theta (numpy.ndarray): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 358 |  |  | 					* rs (float): Distance of search space. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 359 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 360 |  |  | 		See Also: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 361 |  |  | 			* :func:`NiaPy.algorithms.algorithm.Algorithm.initPopulation` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 362 |  |  | 			* :func:`NiaPy.algorithms.other.aso.AnarchicSocietyOptimization.init` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 363 |  |  | 		""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 364 |  |  | 		X, X_f, d = Algorithm.initPopulation(self, task) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 365 |  |  | 		alpha, gamma, theta = self.init(task) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 366 |  |  | 		Xpb, Xpb_f = self.uBestAndPBest(X, X_f, full([self.NP, task.D], 0.0), full(self.NP, task.optType.value * inf)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 367 |  |  | 		d.update({'Xpb': Xpb, 'Xpb_f': Xpb_f, 'alpha': alpha, 'gamma': gamma, 'theta': theta, 'rs': self.d(task.Upper, task.Lower)}) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 368 |  |  | 		return X, X_f, d | 
            
                                                                                                            
                            
            
                                    
            
            
                | 369 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 370 |  |  | 	def runIteration(self, task, X, X_f, xb, fxb, Xpb, Xpb_f, alpha, gamma, theta, rs, **dparams): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 371 |  |  | 		r"""Core function of AnarchicSocietyOptimization algorithm. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 372 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 373 |  |  | 		Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 374 |  |  | 			task (Task): Optimization task. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 375 |  |  | 			X (numpy.ndarray): Current populations positions. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 376 |  |  | 			X_f (numpy.ndarray): Current populations function/fitness values. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 377 |  |  | 			xb (numpy.ndarray): Current global best individuals position. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 378 |  |  | 			fxb (float): Current global best individual function/fitness value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 379 |  |  | 			Xpb (numpy.ndarray): Current populations best positions. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 380 |  |  | 			Xpb_f (numpy.ndarray): Current population best positions function/fitness values. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 381 |  |  | 			alpha (numpy.ndarray): TODO. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 382 |  |  | 			gamma (numpy.ndarray): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 383 |  |  | 			theta (numpy.ndarray): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 384 |  |  | 			**dparams: Additional arguments. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 385 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 386 |  |  | 		Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 387 |  |  | 			Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, dict]: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 388 |  |  | 				1. Initialized population | 
            
                                                                                                            
                            
            
                                    
            
            
                | 389 |  |  | 				2. Initialized population fitness/function values | 
            
                                                                                                            
                            
            
                                    
            
            
                | 390 |  |  | 				3. New global best solution | 
            
                                                                                                            
                            
            
                                    
            
            
                | 391 |  |  | 				4. New global best solutions fitness/objective value | 
            
                                                                                                            
                            
            
                                    
            
            
                | 392 |  |  | 				5. Dict[str, Union[float, int, numpy.ndarray]: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 393 |  |  | 					* Xpb (numpy.ndarray): Initialized populations best positions. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 394 |  |  | 					* Xpb_f (numpy.ndarray): Initialized populations best positions function/fitness values. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 395 |  |  | 					* alpha (numpy.ndarray): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 396 |  |  | 					* gamma (numpy.ndarray): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 397 |  |  | 					* theta (numpy.ndarray): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 398 |  |  | 					* rs (float): Distance of search space. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 399 |  |  | 		""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 400 |  |  | 		Xin = [self.getBestNeighbors(i, X, X_f, rs) for i in range(len(X))] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 401 |  |  | 		MP_c, MP_s, MP_p = asarray([self.FI(X_f[i], Xpb_f[i], fxb, alpha[i]) for i in range(len(X))]), asarray([self.EI(X_f[i], X_f[Xin[i]], gamma[i]) for i in range(len(X))]), asarray([self.II(X_f[i], Xpb_f[i], theta[i]) for i in range(len(X))]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 402 |  |  | 		Xtmp = asarray([self.Combination(X[i], Xpb[i], xb, X[self.randint(len(X), skip=[i])], MP_c[i], MP_s[i], MP_p[i], self.F, self.CR, task, self.Rand) for i in range(len(X))]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 403 |  |  | 		X, X_f = asarray([Xtmp[i][0] for i in range(len(X))]), asarray([Xtmp[i][1] for i in range(len(X))]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 404 |  |  | 		Xpb, Xpb_f = self.uBestAndPBest(X, X_f, Xpb, Xpb_f) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 405 |  |  | 		xb, fxb = self.getBest(X, X_f, xb, fxb) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 406 |  |  | 		return X, X_f, xb, fxb, {'Xpb': Xpb, 'Xpb_f': Xpb_f, 'alpha': alpha, 'gamma': gamma, 'theta': theta, 'rs': rs} | 
            
                                                                                                            
                            
            
                                    
            
            
                | 407 |  |  |  | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 408 |  |  | # vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 | 
            
                                                        
            
                                    
            
            
                | 409 |  |  |  |