|
1
|
|
|
# encoding=utf8 |
|
2
|
|
|
import logging |
|
3
|
|
|
from scipy.spatial.distance import euclidean |
|
4
|
|
|
from numpy import apply_along_axis, argsort, where, random as rand, asarray, delete, sqrt, sum, unique, append |
|
5
|
|
|
from NiaPy.algorithms.algorithm import Algorithm |
|
6
|
|
|
|
|
7
|
|
|
logging.basicConfig() |
|
8
|
|
|
logger = logging.getLogger('NiaPy.algorithms.basic') |
|
9
|
|
|
logger.setLevel('INFO') |
|
10
|
|
|
|
|
11
|
|
|
__all__ = ['CoralReefsOptimization'] |
|
12
|
|
|
|
|
13
|
|
|
def SexualCrossoverSimple(pop, p, task, rnd=rand, **kwargs): |
|
14
|
|
|
r"""Sexual reproduction of corals. |
|
15
|
|
|
|
|
16
|
|
|
Args: |
|
17
|
|
|
pop (numpy.ndarray): Current population. |
|
18
|
|
|
p (float): Probability in range [0, 1]. |
|
19
|
|
|
task (Task): Optimization task. |
|
20
|
|
|
rnd (mtrand.RandomState): Random generator. |
|
21
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
|
22
|
|
|
|
|
23
|
|
|
Returns: |
|
24
|
|
|
Tuple[numpy.ndarray, numpy.ndarray]: |
|
25
|
|
|
1. New population. |
|
26
|
|
|
2. New population function/fitness values. |
|
27
|
|
|
""" |
|
28
|
|
|
for i in range(len(pop) // 2): pop[i] = asarray([pop[i, d] if rnd.rand() < p else pop[i * 2, d] for d in range(task.D)]) |
|
29
|
|
|
return pop, apply_along_axis(task.eval, 1, pop) |
|
30
|
|
|
|
|
31
|
|
|
def BroodingSimple(pop, p, task, rnd=rand, **kwargs): |
|
32
|
|
|
r"""Brooding or internal sexual reproduction of corals. |
|
33
|
|
|
|
|
34
|
|
|
Args: |
|
35
|
|
|
pop (numpy.ndarray): Current population. |
|
36
|
|
|
p (float): Probability in range [0, 1]. |
|
37
|
|
|
task (Task): Optimization task. |
|
38
|
|
|
rnd (mtrand.RandomState): Random generator. |
|
39
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
|
40
|
|
|
|
|
41
|
|
|
Returns: |
|
42
|
|
|
Tuple[numpy.ndarray, numpy.ndarray]: |
|
43
|
|
|
1. New population. |
|
44
|
|
|
2. New population function/fitness values. |
|
45
|
|
|
""" |
|
46
|
|
|
for i in range(len(pop)): pop[i] = task.repair(asarray([pop[i, d] if rnd.rand() < p else task.Lower[d] + task.bRange[d] * rnd.rand() for d in range(task.D)]), rnd=rnd) |
|
47
|
|
|
return pop, apply_along_axis(task.eval, 1, pop) |
|
48
|
|
|
|
|
49
|
|
|
def MoveCorals(pop, p, F, task, rnd=rand, **kwargs): |
|
50
|
|
|
r"""Move corals. |
|
51
|
|
|
|
|
52
|
|
|
Args: |
|
53
|
|
|
pop (numpy.ndarray): Current population. |
|
54
|
|
|
p (float): Probability in range [0, 1]. |
|
55
|
|
|
F (float): Factor. |
|
56
|
|
|
task (Task): Optimization task. |
|
57
|
|
|
rnd (mtrand.RandomState): Random generator. |
|
58
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
|
59
|
|
|
|
|
60
|
|
|
Returns: |
|
61
|
|
|
Tuple[numpy.ndarray, numpy.ndarray]: |
|
62
|
|
|
1. New population. |
|
63
|
|
|
2. New population function/fitness values. |
|
64
|
|
|
""" |
|
65
|
|
|
for i in range(len(pop)): pop[i] = task.repair(asarray([pop[i, d] if rnd.rand() < p else pop[i, d] + F * rnd.rand() for d in range(task.D)]), rnd=rnd) |
|
66
|
|
|
return pop, apply_along_axis(task.eval, 1, pop) |
|
67
|
|
|
|
|
68
|
|
|
class CoralReefsOptimization(Algorithm): |
|
69
|
|
|
r"""Implementation of Coral Reefs Optimization Algorithm. |
|
70
|
|
|
|
|
71
|
|
|
Algorithm: |
|
72
|
|
|
Coral Reefs Optimization Algorithm |
|
73
|
|
|
|
|
74
|
|
|
Date: |
|
75
|
|
|
2018 |
|
76
|
|
|
|
|
77
|
|
|
Authors: |
|
78
|
|
|
Klemen Berkovič |
|
79
|
|
|
|
|
80
|
|
|
License: |
|
81
|
|
|
MIT |
|
82
|
|
|
|
|
83
|
|
|
Reference Paper: |
|
84
|
|
|
S. Salcedo-Sanz, J. Del Ser, I. Landa-Torres, S. Gil-López, and J. A. Portilla-Figueras, “The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems,” The Scientific World Journal, vol. 2014, Article ID 739768, 15 pages, 2014. |
|
85
|
|
|
|
|
86
|
|
|
Reference URL: |
|
87
|
|
|
https://doi.org/10.1155/2014/739768. |
|
88
|
|
|
|
|
89
|
|
|
Attributes: |
|
90
|
|
|
Name (List[str]): List of strings representing algorithm name. |
|
91
|
|
|
phi (float): Range of neighborhood. |
|
92
|
|
|
Fa (int): Number of corals used in asexsual reproduction. |
|
93
|
|
|
Fb (int): Number of corals used in brooding. |
|
94
|
|
|
Fd (int): Number of corals used in depredation. |
|
95
|
|
|
k (int): Nomber of trys for larva setting. |
|
96
|
|
|
P_F (float): Mutation variable :math:`\in [0, \infty]`. |
|
97
|
|
|
P_Cr(float): Crossover rate in [0, 1]. |
|
98
|
|
|
Distance (Callable[[numpy.ndarray, numpy.ndarray], float]): Funciton for calculating distance between corals. |
|
99
|
|
|
SexualCrossover (Callable[[numpy.ndarray, float, Task, mtrand.RandomState, Dict[str, Any]], Tuple[numpy.ndarray, numpy.ndarray[float]]]): Crossover function. |
|
100
|
|
|
Brooding (Callable[[numpy.ndarray, float, Task, mtrand.RandomState, Dict[str, Any]], Tuple[numpy.ndarray, numpy.ndarray]]): Brooding function. |
|
101
|
|
|
|
|
102
|
|
|
See Also: |
|
103
|
|
|
* :class:`NiaPy.algorithms.Algorithm` |
|
104
|
|
|
""" |
|
105
|
|
|
Name = ['CoralReefsOptimization', 'CRO'] |
|
106
|
|
|
|
|
107
|
|
|
@staticmethod |
|
108
|
|
|
def algorithmInfo(): |
|
109
|
|
|
r"""Get algorithms information. |
|
110
|
|
|
|
|
111
|
|
|
Returns: |
|
112
|
|
|
str: Algorithm information. |
|
113
|
|
|
|
|
114
|
|
|
See Also: |
|
115
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
|
116
|
|
|
""" |
|
117
|
|
|
return r"""S. Salcedo-Sanz, J. Del Ser, I. Landa-Torres, S. Gil-López, and J. A. Portilla-Figueras, “The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems,” The Scientific World Journal, vol. 2014, Article ID 739768, 15 pages, 2014.""" |
|
118
|
|
|
|
|
119
|
|
|
@staticmethod |
|
120
|
|
|
def typeParameters(): |
|
121
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
|
122
|
|
|
|
|
123
|
|
|
Returns: |
|
124
|
|
|
Dict[str, Callable]: |
|
125
|
|
|
* N (func): TODO |
|
126
|
|
|
* phi (func): TODO |
|
127
|
|
|
* Fa (func): TODO |
|
128
|
|
|
* Fb (func): TODO |
|
129
|
|
|
* Fd (func): TODO |
|
130
|
|
|
* k (func): TODO |
|
131
|
|
|
""" |
|
132
|
|
|
return { |
|
133
|
|
|
# TODO funkcije za testiranje |
|
134
|
|
|
'N': False, |
|
135
|
|
|
'phi': False, |
|
136
|
|
|
'Fa': False, |
|
137
|
|
|
'Fb': False, |
|
138
|
|
|
'Fd': False, |
|
139
|
|
|
'k': False |
|
140
|
|
|
} |
|
141
|
|
|
|
|
142
|
|
|
def setParameters(self, N=25, phi=0.4, Fa=0.5, Fb=0.5, Fd=0.3, k=25, P_Cr=0.5, P_F=0.36, SexualCrossover=SexualCrossoverSimple, Brooding=BroodingSimple, Distance=euclidean, **ukwargs): |
|
143
|
|
|
r"""Set the parameters of the algorithm. |
|
144
|
|
|
|
|
145
|
|
|
Arguments: |
|
146
|
|
|
N (int): population size for population initialization. |
|
147
|
|
|
phi (int): TODO. |
|
148
|
|
|
Fa (float): Value $\in [0, 1]$ for Asexual reproduction size. |
|
149
|
|
|
Fb (float): Value $\in [0, 1]$ for Brooding size. |
|
150
|
|
|
Fd (float): Value $\in [0, 1]$ for Depredation size. |
|
151
|
|
|
k (int): Trys for larvae setting. |
|
152
|
|
|
SexualCrossover (Callable[[numpy.ndarray, float, Task, mtrand.RandomState, Dict[str, Any]], Tuple[numpy.ndarray, numpy.ndarray]]): Crossover function. |
|
153
|
|
|
P_Cr (float): Crossover rate $\in [0, 1]$. |
|
154
|
|
|
Brooding (Callable[[numpy.ndarray, float, Task, mtrand.RandomState, Dict[str, Any]], Tuple[numpy.ndarray, numpy.ndarray]]): Brooding function. |
|
155
|
|
|
P_F (float): Crossover rate $\in [0, 1]$. |
|
156
|
|
|
Distance (Callable[[numpy.ndarray, numpy.ndarray], float]): Funciton for calculating distance between corals. |
|
157
|
|
|
|
|
158
|
|
|
See Also: |
|
159
|
|
|
* :func:`NiaPy.algorithms.Algorithm.setParameters` |
|
160
|
|
|
""" |
|
161
|
|
|
ukwargs.pop('NP', None) |
|
162
|
|
|
Algorithm.setParameters(self, NP=N, **ukwargs) |
|
163
|
|
|
self.phi, self.k, self.P_Cr, self.P_F = phi, k, P_Cr, P_F |
|
164
|
|
|
self.Fa, self.Fb, self.Fd = int(self.NP * Fa), int(self.NP * Fb), int(self.NP * Fd) |
|
165
|
|
|
self.SexualCrossover, self.Brooding, self.Distance = SexualCrossover, Brooding, Distance |
|
166
|
|
|
|
|
167
|
|
|
def getParameters(self): |
|
168
|
|
|
r"""Get parameters values of the algorithm. |
|
169
|
|
|
|
|
170
|
|
|
Returns: |
|
171
|
|
|
Dict[str, Any]: TODO. |
|
172
|
|
|
""" |
|
173
|
|
|
d = Algorithm.getParameters(self) |
|
174
|
|
|
d.update({ |
|
175
|
|
|
'phi': self.phi, |
|
176
|
|
|
'k': self.k, |
|
177
|
|
|
'P_Cr': self.P_Cr, |
|
178
|
|
|
'P_F': self.P_F, |
|
179
|
|
|
'Fa': self.Fa, |
|
180
|
|
|
'Fd': self.Fd, |
|
181
|
|
|
'Fb': self.Fb |
|
182
|
|
|
}) |
|
183
|
|
|
return d |
|
184
|
|
|
|
|
185
|
|
|
def asexualReprodution(self, Reef, Reef_f, xb, fxb, task): |
|
186
|
|
|
r"""Asexual reproduction of corals. |
|
187
|
|
|
|
|
188
|
|
|
Args: |
|
189
|
|
|
Reef (numpy.ndarray): Current population of reefs. |
|
190
|
|
|
Reef_f (numpy.ndarray): Current populations function/fitness values. |
|
191
|
|
|
task (Task): Optimization task. |
|
192
|
|
|
|
|
193
|
|
|
Returns: |
|
194
|
|
|
Tuple[numpy.ndarray, numpy.ndarray]: |
|
195
|
|
|
1. New population. |
|
196
|
|
|
2. New population fitness/funciton values. |
|
197
|
|
|
|
|
198
|
|
|
See Also: |
|
199
|
|
|
* :func:`NiaPy.algorithms.basic.CoralReefsOptimization.setting` |
|
200
|
|
|
* :func:`NiaPy.algorithms.basic.BroodingSimple` |
|
201
|
|
|
""" |
|
202
|
|
|
I = argsort(Reef_f)[:self.Fa] |
|
203
|
|
|
Reefn, Reefn_f = self.Brooding(Reef[I], self.P_F, task, rnd=self.Rand) |
|
204
|
|
|
xb, fxb = self.getBest(Reefn, Reefn_f, xb, fxb) |
|
205
|
|
|
Reef, Reef_f, xb, fxb = self.setting(Reef, Reef_f, Reefn, Reefn_f, xb, fxb, task) |
|
206
|
|
|
return Reef, Reef_f, xb, fxb |
|
207
|
|
|
|
|
208
|
|
|
def depredation(self, Reef, Reef_f): |
|
209
|
|
|
r"""Depredation operator for reefs. |
|
210
|
|
|
|
|
211
|
|
|
Args: |
|
212
|
|
|
Reef (numpy.ndarray): Current reefs. |
|
213
|
|
|
Reef_f (numpy.ndarray): Current reefs function/fitness values. |
|
214
|
|
|
|
|
215
|
|
|
Returns: |
|
216
|
|
|
Tuple[numpy.ndarray, numpy.ndarray]: |
|
217
|
|
|
1. Best individual |
|
218
|
|
|
2. Best individual fitness/function value |
|
219
|
|
|
""" |
|
220
|
|
|
I = argsort(Reef_f)[::-1][:self.Fd] |
|
221
|
|
|
return delete(Reef, I), delete(Reef_f, I) |
|
222
|
|
|
|
|
223
|
|
|
def setting(self, X, X_f, Xn, Xn_f, xb, fxb, task): |
|
224
|
|
|
r"""Operator for setting reefs. |
|
225
|
|
|
|
|
226
|
|
|
New reefs try to seatle to selected position in search space. |
|
227
|
|
|
New reefs are successful if theyr fitness values is better or if they have no reef ocupying same search space. |
|
228
|
|
|
|
|
229
|
|
|
Args: |
|
230
|
|
|
X (numpy.ndarray): Current population of reefs. |
|
231
|
|
|
X_f (numpy.ndarray): Current populations function/fitness values. |
|
232
|
|
|
Xn (numpy.ndarray): New population of reefs. |
|
233
|
|
|
Xn_f (array of float): New populations function/fitness values. |
|
234
|
|
|
xb (numpy.ndarray): Global best solution. |
|
235
|
|
|
fxb (float): Global best solutions fitness/objective value. |
|
236
|
|
|
task (Task): Optimization task. |
|
237
|
|
|
|
|
238
|
|
|
Returns: |
|
239
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float]: |
|
240
|
|
|
1. New seatled population. |
|
241
|
|
|
2. New seatled population fitness/function values. |
|
242
|
|
|
""" |
|
243
|
|
|
def update(A, phi, xb, fxb): |
|
244
|
|
|
D = asarray([sqrt(sum((A - e) ** 2, axis=1)) for e in Xn]) |
|
|
|
|
|
|
245
|
|
|
I = unique(where(D < phi)[0]) |
|
246
|
|
|
if I.any(): |
|
247
|
|
|
Xn[I], Xn_f[I] = MoveCorals(Xn[I], self.P_F, self.P_F, task, rnd=self.Rand) |
|
248
|
|
|
xb, fxb = self.getBest(Xn[I], Xn_f[I], xb, fxb) |
|
|
|
|
|
|
249
|
|
|
return xb, fxb |
|
250
|
|
|
for i in range(self.k): |
|
251
|
|
|
xb, fxb = update(X, self.phi, xb, fxb) |
|
252
|
|
|
xb, fxb = update(Xn, self.phi, xb, fxb) |
|
253
|
|
|
D = asarray([sqrt(sum((X - e) ** 2, axis=1)) for e in Xn]) |
|
254
|
|
|
I = unique(where(D >= self.phi)[0]) |
|
255
|
|
|
return append(X, Xn[I], 0), append(X_f, Xn_f[I], 0), xb, fxb |
|
256
|
|
|
|
|
257
|
|
|
def runIteration(self, task, Reef, Reef_f, xb, fxb, **dparams): |
|
258
|
|
|
r"""Core function of Coral Reefs Optimization algorithm. |
|
259
|
|
|
|
|
260
|
|
|
Args: |
|
261
|
|
|
task (Task): Optimization task. |
|
262
|
|
|
Reef (numpy.ndarray): Current population. |
|
263
|
|
|
Reef_f (numpy.ndarray): Current population fitness/function value. |
|
264
|
|
|
xb (numpy.ndarray): Global best solution. |
|
265
|
|
|
fxb (float): Global best solution fitness/function value. |
|
266
|
|
|
**dparams: Additional arguments |
|
267
|
|
|
|
|
268
|
|
|
Returns: |
|
269
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, Dict[str, Any]]: |
|
270
|
|
|
1. New population. |
|
271
|
|
|
2. New population fitness/function values. |
|
272
|
|
|
3. New global bset solution |
|
273
|
|
|
4. New global best solutions fitness/objective value |
|
274
|
|
|
5. Additional arguments: |
|
275
|
|
|
|
|
276
|
|
|
See Also: |
|
277
|
|
|
* :func:`NiaPy.algorithms.basic.CoralReefsOptimization.SexualCrossover` |
|
278
|
|
|
* :func:`NiaPy.algorithms.basic.CoralReefsOptimization.Brooding` |
|
279
|
|
|
""" |
|
280
|
|
|
I = self.Rand.choice(len(Reef), size=self.Fb, replace=False) |
|
281
|
|
|
Reefn_s, Reefn_s_f = self.SexualCrossover(Reef[I], self.P_Cr, task, rnd=self.Rand) |
|
282
|
|
|
xb, fxb = self.getBest(Reefn_s, Reefn_s_f, xb, fxb) |
|
283
|
|
|
Reefn_b, Reffn_b_f = self.Brooding(delete(Reef, I, 0), self.P_F, task, rnd=self.Rand) |
|
284
|
|
|
xb, fxb = self.getBest(Reefn_s, Reefn_s_f, xb, fxb) |
|
285
|
|
|
Reefn, Reefn_f, xb, fxb = self.setting(Reef, Reef_f, append(Reefn_s, Reefn_b, 0), append(Reefn_s_f, Reffn_b_f, 0), xb, fxb, task) |
|
286
|
|
|
Reef, Reef_f, xb, fxb = self.asexualReprodution(Reefn, Reefn_f, xb, fxb, task) |
|
287
|
|
|
if task.Iters % self.k == 0: Reef, Reef_f = self.depredation(Reef, Reef_f) |
|
288
|
|
|
return Reef, Reef_f, xb, fxb, {} |
|
289
|
|
|
|
|
290
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
|
291
|
|
|
|