1
|
|
|
"""Flower Pollination algorithm. |
2
|
|
|
|
3
|
|
|
Date: February 2018 |
4
|
|
|
|
5
|
|
|
Authors : Dusan Fister & Iztok Fister Jr. |
6
|
|
|
|
7
|
|
|
License: MIT |
8
|
|
|
|
9
|
|
|
Reference paper: Yang, Xin-She. "Flower pollination algorithm for |
10
|
|
|
global optimization." International conference on unconventional |
11
|
|
|
computing and natural computation. Springer, Berlin, Heidelberg, 2012. |
12
|
|
|
|
13
|
|
|
Implementation is based on the following MATLAB code: |
14
|
|
|
https://www.mathworks.com/matlabcentral/fileexchange/45112-flower-pollination-algorithm?requestedDomain=true |
15
|
|
|
""" |
16
|
|
|
|
17
|
|
|
import random |
18
|
|
|
import numpy as np |
19
|
|
|
from scipy.special import gamma as Gamma |
20
|
|
|
from NiaPy.benchmarks.utility import Utility |
21
|
|
|
|
22
|
|
|
__all__ = ['FlowerPollinationAlgorithm'] |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
class FlowerPollinationAlgorithm(object): |
26
|
|
|
# pylint: disable=too-many-instance-attributes |
27
|
|
View Code Duplication |
def __init__(self, D, NP, nFES, p, benchmark): |
|
|
|
|
28
|
|
|
self.benchmark = Utility.get_benchmark(benchmark) |
29
|
|
|
self.D = D # dimension |
30
|
|
|
self.NP = NP # population size |
31
|
|
|
self.nFES = nFES # number of function evaluations |
32
|
|
|
self.p = p # probability switch |
33
|
|
|
self.Lower = self.benchmark.Lower # lower bound |
34
|
|
|
self.Upper = self.benchmark.Upper # upper bound |
35
|
|
|
self.Fun = self.benchmark.function() # function |
36
|
|
|
|
37
|
|
|
self.f_min = 0.0 # minimum fitness |
38
|
|
|
|
39
|
|
|
self.Lb = [0] * self.D # lower bound |
40
|
|
|
self.Ub = [0] * self.D # upper bound |
41
|
|
|
|
42
|
|
|
self.dS = [[0 for _i in range(self.D)] |
43
|
|
|
for _j in range(self.NP)] # differential |
44
|
|
|
self.Sol = [[0 for _i in range(self.D)] |
45
|
|
|
for _j in range(self.NP)] # population of solutions |
46
|
|
|
self.Fitness = [0] * self.NP # fitness |
47
|
|
|
self.best = [0] * self.D # best solution |
48
|
|
|
self.evaluations = 0 # evaluations counter |
49
|
|
View Code Duplication |
|
|
|
|
|
50
|
|
|
def best_flower(self): |
51
|
|
|
i = 0 |
52
|
|
|
j = 0 |
53
|
|
|
for i in range(self.NP): |
54
|
|
|
if self.Fitness[i] < self.Fitness[j]: |
55
|
|
|
j = i |
56
|
|
|
for i in range(self.D): |
57
|
|
|
self.best[i] = self.Sol[j][i] |
58
|
|
|
self.f_min = self.Fitness[j] |
59
|
|
|
|
60
|
|
|
@classmethod |
61
|
|
|
def simplebounds(cls, val, lower, upper): |
62
|
|
|
if val < lower: |
63
|
|
|
val = lower |
64
|
|
|
if val > upper: |
65
|
|
|
val = upper |
66
|
|
|
return val |
67
|
|
View Code Duplication |
|
|
|
|
|
68
|
|
|
def init_flower(self): |
69
|
|
|
for i in range(self.D): |
70
|
|
|
self.Lb[i] = self.Lower |
71
|
|
|
self.Ub[i] = self.Upper |
72
|
|
|
|
73
|
|
|
for i in range(self.NP): |
74
|
|
|
for j in range(self.D): |
75
|
|
|
rnd = random.uniform(0, 1) |
76
|
|
|
self.dS[i][j] = 0.0 |
77
|
|
|
self.Sol[i][j] = self.Lb[j] + (self.Ub[j] - self.Lb[j]) * rnd |
78
|
|
|
self.Fitness[i] = self.Fun(self.D, self.Sol[i]) |
79
|
|
|
self.evaluations = self.evaluations + 1 |
80
|
|
|
self.best_flower() |
81
|
|
|
|
82
|
|
|
def move_flower(self): |
83
|
|
|
S = [[0.0 for i in range(self.D)] for j in range(self.NP)] |
84
|
|
|
self.init_flower() |
85
|
|
|
|
86
|
|
|
while True: |
87
|
|
|
if self.evaluations == self.nFES: |
88
|
|
|
break |
89
|
|
|
|
90
|
|
|
for i in range(self.NP): |
91
|
|
|
if random.uniform(0, 1) > self.p: # probability switch |
92
|
|
|
L = self.Levy() |
93
|
|
|
for j in range(self.D): |
94
|
|
|
self.dS[i][j] = L[j] * (self.Sol[i][j] - self.best[j]) |
95
|
|
|
S[i][j] = self.Sol[i][j] + self.dS[i][j] |
96
|
|
|
|
97
|
|
|
S[i][j] = self.simplebounds( |
98
|
|
|
S[i][j], self.Lb[j], self.Ub[j]) |
99
|
|
|
else: |
100
|
|
|
epsilon = random.uniform(0, 1) |
101
|
|
|
JK = np.random.permutation(self.NP) |
102
|
|
|
|
103
|
|
|
for j in range(self.D): |
104
|
|
|
S[i][j] = S[i][j] + epsilon * \ |
105
|
|
|
(self.Sol[JK[0]][j] - self.Sol[JK[1]][j]) |
106
|
|
|
S[i][j] = self.simplebounds( |
107
|
|
|
S[i][j], self.Lb[j], self.Ub[j]) |
108
|
|
|
|
109
|
|
|
Fnew = self.Fun(self.D, S[i]) |
110
|
|
|
self.evaluations = self.evaluations + 1 |
111
|
|
|
|
112
|
|
|
if Fnew <= self.Fitness[i]: |
113
|
|
|
for j in range(self.D): |
114
|
|
|
self.Sol[i][j] = S[i][j] |
115
|
|
|
self.Fitness[i] = Fnew |
116
|
|
|
|
117
|
|
|
if Fnew <= self.f_min: |
118
|
|
|
for j in range(self.D): |
119
|
|
|
self.best[j] = S[i][j] |
120
|
|
|
self.f_min = Fnew |
121
|
|
|
|
122
|
|
|
return self.f_min |
123
|
|
|
|
124
|
|
|
def Levy(self): |
125
|
|
|
beta = 1.5 |
126
|
|
|
sigma = (Gamma(1 + beta) * np.sin(np.pi * beta / 2) / |
127
|
|
|
(Gamma((1 + beta) / 2) * beta * 2**((beta - 1) / 2)))**(1 / beta) |
128
|
|
|
u = [[0] for j in range(self.D)] |
129
|
|
|
v = [[0] for j in range(self.D)] |
130
|
|
|
step = [[0] for j in range(self.D)] |
131
|
|
|
L = [[0] for j in range(self.D)] |
132
|
|
|
|
133
|
|
|
for j in range(self.D): |
134
|
|
|
u[j] = np.random.normal(0, 1) * sigma |
135
|
|
|
v[j] = np.random.normal(0, 1) |
136
|
|
|
step[j] = u[j] / abs(v[j])**(1 / beta) |
137
|
|
|
L[j] = 0.01 * step[j] |
138
|
|
|
|
139
|
|
|
return L |
140
|
|
|
|
141
|
|
|
def run(self): |
142
|
|
|
return self.move_flower() |
143
|
|
|
|