1
|
|
|
import logging |
2
|
|
|
import copy |
3
|
|
|
from NiaPy import algorithms, benchmarks |
4
|
|
|
|
5
|
|
|
__all__ = ['algorithms', 'benchmarks'] |
6
|
|
|
__project__ = 'NiaPy' |
7
|
|
|
__version__ = '0.0.0' |
8
|
|
|
|
9
|
|
|
VERSION = "{0} v{1}".format(__project__, __version__) |
10
|
|
|
|
11
|
|
|
logging.basicConfig() |
12
|
|
|
logger = logging.getLogger('NiaPy') |
13
|
|
|
logger.setLevel('INFO') |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
class Runner(object): |
17
|
|
|
# pylint: disable=too-many-instance-attributes, too-many-locals |
18
|
|
|
def __init__(self, D, NP, nFES, nRuns, useAlgorithms, useBenchmarks, |
19
|
|
|
A=0.5, r=0.5, Qmin=0.0, Qmax=2.0, F=0.5, CR=0.9, alpha=0.5, |
20
|
|
|
betamin=0.2, gamma=1.0, p=0.5, Lower=-5, Upper=5): |
21
|
|
|
self.D = D |
22
|
|
|
self.NP = NP |
23
|
|
|
self.nFES = nFES |
24
|
|
|
self.nRuns = nRuns |
25
|
|
|
self.useAlgorithms = useAlgorithms |
26
|
|
|
self.useBenchmarks = useBenchmarks |
27
|
|
|
self.A = A |
28
|
|
|
self.r = r |
29
|
|
|
self.Qmin = Qmin |
30
|
|
|
self.Qmax = Qmax |
31
|
|
|
self.F = F |
32
|
|
|
self.CR = CR |
33
|
|
|
self.alpha = alpha |
34
|
|
|
self.betamin = betamin |
35
|
|
|
self.gamma = gamma |
36
|
|
|
self.p = p |
37
|
|
|
self.Lower = Lower |
38
|
|
|
self.Upper = Upper |
39
|
|
|
self.results = {} |
40
|
|
|
|
41
|
|
|
def __algorithmFactory(self, name, benchmark): |
42
|
|
|
bench = benchmarks.utility.Utility.get_benchmark( |
43
|
|
|
benchmark, self.Lower, self.Upper) |
44
|
|
|
|
45
|
|
|
if name == 'BatAlgorithm': |
46
|
|
|
return algorithms.basic.BatAlgorithm( |
47
|
|
|
self.D, self.NP, self.nFES, self.A, self.r, self.Qmin, self.Qmax, bench) |
48
|
|
|
elif name == 'DifferentialEvolutionAlgorithm': |
49
|
|
|
return algorithms.basic.DifferentialEvolutionAlgorithm( |
50
|
|
|
self.D, self.NP, self.nFES, self.F, self.CR, bench) |
51
|
|
|
elif name == 'FireflyAlgorithm': |
52
|
|
|
return algorithms.basic.FireflyAlgorithm( |
53
|
|
|
self.D, self.NP, self.nFES, self.alpha, self.betamin, self.gamma, bench) |
54
|
|
|
elif name == 'FlowerPollinationAlgorithm': |
55
|
|
|
return algorithms.basic.FlowerPollinationAlgorithm( |
56
|
|
|
self.D, self.NP, self.nFES, self.p, bench) |
57
|
|
|
elif name == 'GreyWolfOptimizer': |
58
|
|
|
return algorithms.basic.GreyWolfOptimizer( |
59
|
|
|
self.D, self.NP, self.nFES, bench) |
60
|
|
|
elif name == 'HybridBatAlgorithm': |
61
|
|
|
return algorithms.modified.HybridBatAlgorithm( |
62
|
|
|
self.D, self.NP, self.nFES, self.A, self.r, self.Qmin, self.Qmax, bench) |
63
|
|
|
else: |
64
|
|
|
raise TypeError('Passed benchmark is not defined!') |
65
|
|
|
|
66
|
|
|
def __exportToLog(self): |
67
|
|
|
print(self.results) |
68
|
|
|
|
69
|
|
|
def run(self, export='log'): |
70
|
|
|
for alg in self.useAlgorithms: |
71
|
|
|
self.results[alg] = {} |
72
|
|
|
for bench in self.useBenchmarks: |
73
|
|
|
benchName = '' |
74
|
|
|
# check if passed benchmark is class |
75
|
|
|
if not isinstance(bench, ''.__class__): |
76
|
|
|
# set class name as benchmark name |
77
|
|
|
benchName = str(type(bench).__name__) |
78
|
|
|
else: |
79
|
|
|
benchName = bench |
80
|
|
|
|
81
|
|
|
self.results[alg][benchName] = [] |
82
|
|
|
|
83
|
|
|
for _i in range(self.nRuns): |
84
|
|
|
algorithm = self.__algorithmFactory(alg, bench) |
85
|
|
|
self.results[alg][benchName].append(algorithm.run()) |
86
|
|
|
|
87
|
|
|
if export == 'log': |
88
|
|
|
self.__exportToLog() |
89
|
|
|
elif export == 'xls': |
90
|
|
|
# TODO: implement export to xls |
91
|
|
|
pass |
92
|
|
|
elif export == 'latex': |
93
|
|
|
# TODO: implement export to latex |
94
|
|
|
pass |
95
|
|
|
else: |
96
|
|
|
raise TypeError('Passed export type is not supported!') |
97
|
|
|
|
98
|
|
|
return self.results |
99
|
|
|
|