1
|
|
|
from __future__ import print_function # for backward compatibility purpose |
2
|
|
|
|
3
|
|
|
import os |
4
|
|
|
import logging |
5
|
|
|
import json |
6
|
|
|
import datetime |
7
|
|
|
import xlsxwriter |
8
|
|
|
import numpy as np |
9
|
|
|
from tabulate import tabulate |
10
|
|
|
from NiaPy import algorithms, benchmarks |
11
|
|
|
|
12
|
|
|
__all__ = ['algorithms', 'benchmarks'] |
13
|
|
|
__project__ = 'NiaPy' |
14
|
|
|
__version__ = '0.0.0' |
15
|
|
|
|
16
|
|
|
VERSION = "{0} v{1}".format(__project__, __version__) |
17
|
|
|
|
18
|
|
|
logging.basicConfig() |
19
|
|
|
logger = logging.getLogger('NiaPy') |
20
|
|
|
logger.setLevel('INFO') |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
class Runner(object): |
24
|
|
|
# pylint: disable=too-many-instance-attributes, too-many-locals |
25
|
|
|
def __init__(self, D, NP, nFES, nRuns, useAlgorithms, useBenchmarks, |
26
|
|
|
A=0.5, r=0.5, Qmin=0.0, Qmax=2.0, F=0.5, CR=0.9, alpha=0.5, |
27
|
|
|
betamin=0.2, gamma=1.0, p=0.5): |
28
|
|
|
self.D = D |
29
|
|
|
self.NP = NP |
30
|
|
|
self.nFES = nFES |
31
|
|
|
self.nRuns = nRuns |
32
|
|
|
self.useAlgorithms = useAlgorithms |
33
|
|
|
self.useBenchmarks = useBenchmarks |
34
|
|
|
self.A = A |
35
|
|
|
self.r = r |
36
|
|
|
self.Qmin = Qmin |
37
|
|
|
self.Qmax = Qmax |
38
|
|
|
self.F = F |
39
|
|
|
self.CR = CR |
40
|
|
|
self.alpha = alpha |
41
|
|
|
self.betamin = betamin |
42
|
|
|
self.gamma = gamma |
43
|
|
|
self.p = p |
44
|
|
|
self.results = {} |
45
|
|
|
|
46
|
|
|
def __algorithmFactory(self, name, benchmark): |
47
|
|
|
bench = benchmarks.utility.Utility().get_benchmark(benchmark) |
48
|
|
|
algorithm = None |
49
|
|
|
|
50
|
|
|
if name == 'BatAlgorithm': |
51
|
|
|
algorithm = algorithms.basic.BatAlgorithm( |
52
|
|
|
self.D, self.NP, self.nFES, self.A, self.r, self.Qmin, self.Qmax, bench) |
53
|
|
|
elif name == 'DifferentialEvolutionAlgorithm': |
54
|
|
|
algorithm = algorithms.basic.DifferentialEvolutionAlgorithm( |
55
|
|
|
self.D, self.NP, self.nFES, self.F, self.CR, bench) |
56
|
|
|
elif name == 'FireflyAlgorithm': |
57
|
|
|
algorithm = algorithms.basic.FireflyAlgorithm( |
58
|
|
|
self.D, self.NP, self.nFES, self.alpha, self.betamin, self.gamma, bench) |
59
|
|
|
elif name == 'FlowerPollinationAlgorithm': |
60
|
|
|
algorithm = algorithms.basic.FlowerPollinationAlgorithm( |
61
|
|
|
self.D, self.NP, self.nFES, self.p, bench) |
62
|
|
|
elif name == 'GreyWolfOptimizer': |
63
|
|
|
algorithm = algorithms.basic.GreyWolfOptimizer( |
64
|
|
|
self.D, self.NP, self.nFES, bench) |
65
|
|
|
elif name == 'ArtificialBeeColonyAlgorithm': |
66
|
|
|
algorithm = algorithms.basic.ArtificialBeeColonyAlgorithm(self.D, self.NP, self.nFES, bench) |
67
|
|
|
elif name == 'HybridBatAlgorithm': |
68
|
|
|
algorithm = algorithms.modified.HybridBatAlgorithm( |
69
|
|
|
self.D, self.NP, self.nFES, self.A, self.r, self.F, self.CR, self.Qmin, self.Qmax, bench) |
70
|
|
|
else: |
71
|
|
|
raise TypeError('Passed benchmark is not defined!') |
72
|
|
|
|
73
|
|
|
return algorithm |
74
|
|
|
|
75
|
|
|
@classmethod |
76
|
|
|
def __createExportDir(cls): |
77
|
|
|
if not os.path.exists('export'): |
78
|
|
|
os.makedirs('export') |
79
|
|
|
|
80
|
|
|
@classmethod |
81
|
|
|
def __generateExportName(cls, extension): |
82
|
|
|
return 'export/' + str(datetime.datetime.now()) + '.' + extension |
83
|
|
|
|
84
|
|
|
def __exportToLog(self): |
85
|
|
|
print(self.results) |
86
|
|
|
|
87
|
|
|
def __exportToJson(self): |
88
|
|
|
self.__createExportDir() |
89
|
|
|
with open(self.__generateExportName('json'), 'w') as outFile: |
90
|
|
|
json.dump(self.results, outFile) |
91
|
|
|
logger.info('Export to JSON completed!') |
92
|
|
|
|
93
|
|
|
def __exportToXls(self): |
94
|
|
|
workbook = xlsxwriter.Workbook(self.__generateExportName('xlsx')) |
95
|
|
|
worksheet = workbook.add_worksheet() |
96
|
|
|
|
97
|
|
|
row = 0 |
98
|
|
|
col = 0 |
99
|
|
|
nRuns = 0 |
100
|
|
|
|
101
|
|
|
for alg in self.results: |
102
|
|
|
worksheet.write(row, col, alg) |
103
|
|
|
col += 1 |
104
|
|
|
|
105
|
|
|
for bench in self.results[alg]: |
106
|
|
|
worksheet.write(row, col, bench) |
107
|
|
|
|
108
|
|
|
nRuns = len(self.results[alg][bench]) |
109
|
|
|
|
110
|
|
|
for i in range(len(self.results[alg][bench])): |
111
|
|
|
row += 1 |
112
|
|
|
worksheet.write(row, col, self.results[alg][bench][i]) |
113
|
|
|
|
114
|
|
|
row -= len(self.results[alg][bench]) # jump back up |
115
|
|
|
col += 1 |
116
|
|
|
|
117
|
|
|
row += 1 + nRuns # jump down to row after previous results |
118
|
|
|
col -= 1 + len(self.results[alg]) |
119
|
|
|
|
120
|
|
|
logger.info('Export to XLSX completed!') |
121
|
|
|
|
122
|
|
|
def __exportToLatex(self): |
123
|
|
|
metrics = ['Best', 'Median', 'Worst', 'Mean', 'Std.'] |
124
|
|
|
|
125
|
|
|
with open(self.__generateExportName('tex'), 'a') as outFile: |
126
|
|
|
outFile.write('\\begin{table}[h]\n') |
127
|
|
|
outFile.write('\\centering\n') |
128
|
|
|
|
129
|
|
|
begin_tabular = '\\begin{tabular}{c|c' |
130
|
|
|
|
131
|
|
|
for alg in self.results: |
132
|
|
|
for _i in range(len(self.results[alg])): |
133
|
|
|
begin_tabular += '|c' |
134
|
|
|
|
135
|
|
|
firstLine = ' &' |
136
|
|
|
|
137
|
|
|
for benchmark in self.results[alg].keys(): |
138
|
|
|
firstLine += ' & ' + benchmark |
139
|
|
|
|
140
|
|
|
firstLine += ' \\\\' |
141
|
|
|
|
142
|
|
|
break |
143
|
|
|
|
144
|
|
|
begin_tabular += '}\n' |
145
|
|
|
outFile.write(begin_tabular) |
146
|
|
|
outFile.write('\\hline\n') |
147
|
|
|
outFile.write(firstLine + '\n') |
148
|
|
|
outFile.write('\\hline\n') |
149
|
|
|
|
150
|
|
|
for alg in self.results: |
151
|
|
|
for metric in metrics: |
152
|
|
|
line = '' |
153
|
|
|
|
154
|
|
|
if metric != 'Worst': |
155
|
|
|
line += ' & ' + metric |
156
|
|
|
else: |
157
|
|
|
line += alg + ' & ' + metric |
158
|
|
|
|
159
|
|
|
for benchmark in self.results[alg]: |
160
|
|
|
if metric == 'Best': |
161
|
|
|
line += ' & ' + str(np.amin(self.results[alg][benchmark])) |
162
|
|
|
elif metric == 'Median': |
163
|
|
|
line += ' & ' + str(np.median(self.results[alg][benchmark])) |
164
|
|
|
elif metric == 'Worst': |
165
|
|
|
line += ' & ' + str(np.amax(self.results[alg][benchmark])) |
166
|
|
|
elif metric == 'Mean': |
167
|
|
|
line += ' & ' + str(np.mean(self.results[alg][benchmark])) |
168
|
|
|
else: |
169
|
|
|
line += ' & ' + str(np.std(self.results[alg][benchmark])) |
170
|
|
|
|
171
|
|
|
line += ' \\\\' |
172
|
|
|
outFile.write(line + '\n') |
173
|
|
|
|
174
|
|
|
outFile.write('\\hline\n') |
175
|
|
|
outFile.write('\\end{tabular}\n') |
176
|
|
|
outFile.write('\\end{table}\n') |
177
|
|
|
|
178
|
|
|
logger.info('Export to Latex completed!') |
179
|
|
|
|
180
|
|
|
def run(self, export='log', verbose=False): |
181
|
|
|
for alg in self.useAlgorithms: |
182
|
|
|
self.results[alg] = {} |
183
|
|
|
if verbose: |
184
|
|
|
logger.info('Running %s...', alg) |
185
|
|
|
for bench in self.useBenchmarks: |
186
|
|
|
benchName = '' |
187
|
|
|
# check if passed benchmark is class |
188
|
|
|
if not isinstance(bench, ''.__class__): |
189
|
|
|
# set class name as benchmark name |
190
|
|
|
benchName = str(type(bench).__name__) |
191
|
|
|
else: |
192
|
|
|
benchName = bench |
193
|
|
|
|
194
|
|
|
if verbose: |
195
|
|
|
logger.info('Running %s algorithm on %s benchmark...', alg, benchName) |
196
|
|
|
|
197
|
|
|
self.results[alg][benchName] = [] |
198
|
|
|
|
199
|
|
|
for _i in range(self.nRuns): |
200
|
|
|
algorithm = self.__algorithmFactory(alg, bench) |
201
|
|
|
self.results[alg][benchName].append(algorithm.run()) |
202
|
|
|
|
203
|
|
|
if verbose: |
204
|
|
|
logger.info('---------------------------------------------------') |
205
|
|
|
|
206
|
|
|
if export == 'log': |
207
|
|
|
self.__exportToLog() |
208
|
|
|
elif export == 'json': |
209
|
|
|
self.__exportToJson() |
210
|
|
|
elif export == 'xlsx': |
211
|
|
|
self.__exportToXls() |
212
|
|
|
elif export == 'latex': |
213
|
|
|
self.__exportToLatex() |
214
|
|
|
else: |
215
|
|
|
raise TypeError('Passed export type is not supported!') |
216
|
|
|
|
217
|
|
|
return self.results |
218
|
|
|
|