Total Complexity | 71 |
Total Lines | 864 |
Duplicated Lines | 3.7 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like NiaPy.algorithms.basic.fwa often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # encoding=utf8 |
||
2 | # pylint: disable=mixed-indentation, trailing-whitespace, multiple-statements, attribute-defined-outside-init, logging-not-lazy, arguments-differ, line-too-long, redefined-builtin, no-self-use, singleton-comparison, unused-argument, bad-continuation |
||
3 | import logging |
||
4 | from numpy import apply_along_axis, argmin, argmax, sum, sqrt, round, argsort, fabs, asarray, where |
||
5 | from NiaPy.algorithms.algorithm import Algorithm |
||
6 | from NiaPy.util import fullArray |
||
7 | |||
8 | logging.basicConfig() |
||
9 | logger = logging.getLogger('NiaPy.algorithms.basic') |
||
10 | logger.setLevel('INFO') |
||
11 | |||
12 | __all__ = ['FireworksAlgorithm', 'EnhancedFireworksAlgorithm', 'DynamicFireworksAlgorithm', 'DynamicFireworksAlgorithmGauss', 'BareBonesFireworksAlgorithm'] |
||
13 | |||
14 | class BareBonesFireworksAlgorithm(Algorithm): |
||
15 | r"""Implementation of bare bone fireworks algorithm. |
||
16 | |||
17 | Algorithm: |
||
18 | Bare Bones Fireworks Algorithm |
||
19 | |||
20 | Date: |
||
21 | 2018 |
||
22 | |||
23 | Authors: |
||
24 | Klemen Berkovič |
||
25 | |||
26 | License: |
||
27 | MIT |
||
28 | |||
29 | Reference URL: |
||
30 | https://www.sciencedirect.com/science/article/pii/S1568494617306609 |
||
31 | |||
32 | Reference paper: |
||
33 | Junzhi Li, Ying Tan, The bare bones fireworks algorithm: A minimalist global optimizer, Applied Soft Computing, Volume 62, 2018, Pages 454-462, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2017.10.046. |
||
34 | |||
35 | Attributes: |
||
36 | Name (lsit of str): List of strings representing algorithm names |
||
37 | n (int): Number of spraks |
||
38 | C_a (float): amplification coefficient |
||
39 | C_r (float): reduction coefficient |
||
40 | """ |
||
41 | Name = ['BareBonesFireworksAlgorithm', 'BBFWA'] |
||
42 | |||
43 | @staticmethod |
||
44 | def algorithmInfo(): |
||
45 | r"""Get default information of algorithm. |
||
46 | |||
47 | Returns: |
||
48 | str: Basic information. |
||
49 | |||
50 | See Also: |
||
51 | * :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
||
52 | """ |
||
53 | return r"""Junzhi Li, Ying Tan, The bare bones fireworks algorithm: A minimalist global optimizer, Applied Soft Computing, Volume 62, 2018, Pages 454-462, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2017.10.046.""" |
||
54 | |||
55 | @staticmethod |
||
56 | def typeParameters(): return { |
||
57 | 'n': lambda x: isinstance(x, int) and x > 0, |
||
58 | 'C_a': lambda x: isinstance(x, (float, int)) and x > 1, |
||
59 | 'C_r': lambda x: isinstance(x, (float, int)) and 0 < x < 1 |
||
60 | } |
||
61 | |||
62 | def setParameters(self, n=10, C_a=1.5, C_r=0.5, **ukwargs): |
||
63 | r"""Set the arguments of an algorithm. |
||
64 | |||
65 | Arguments: |
||
66 | n (int): Number of sparks :math:`\in [1, \infty)`. |
||
67 | C_a (float): Amplification coefficient :math:`\in [1, \infty)`. |
||
68 | C_r (float): Reduction coefficient :math:`\in (0, 1)`. |
||
69 | """ |
||
70 | ukwargs.pop('NP', None) |
||
71 | Algorithm.setParameters(self, NP=1, **ukwargs) |
||
72 | self.n, self.C_a, self.C_r = n, C_a, C_r |
||
73 | if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) |
||
74 | |||
75 | def initPopulation(self, task): |
||
76 | r"""Initialize starting population. |
||
77 | |||
78 | Args: |
||
79 | task (Task): Optimization task. |
||
80 | |||
81 | Returns: |
||
82 | Tuple[numpy.ndarray, float, Dict[str, Any]]: |
||
83 | 1. Initial solution. |
||
84 | 2. Initial solution function/fitness value. |
||
85 | 3. Additional arguments: |
||
86 | * A (numpy.ndarray): Starting aplitude or search range. |
||
87 | """ |
||
88 | x, x_fit, d = Algorithm.initPopulation(self, task) |
||
89 | d.update({'A': task.bRange}) |
||
90 | return x, x_fit, d |
||
91 | |||
92 | def runIteration(self, task, x, x_fit, xb, fxb, A, **dparams): |
||
93 | r"""Core function of Bare Bones Fireworks Algorithm. |
||
94 | |||
95 | Args: |
||
96 | task (Task): Optimization task. |
||
97 | x (numpy.ndarray): Current solution. |
||
98 | x_fit (float): Current solution fitness/function value. |
||
99 | xb (numpy.ndarray): Current best solution. |
||
100 | fxb (float): Current best solution fitness/function value. |
||
101 | A (numpy.ndarray): Serach range. |
||
102 | dparams (Dict[str, Any]): Additional parameters. |
||
103 | |||
104 | Returns: |
||
105 | Tuple[numpy.ndarray, float, Dict[str, Any]]: |
||
106 | 1. New solution. |
||
107 | 2. New solution fitness/function value. |
||
108 | 3. Additional arguments: |
||
109 | * A (numpy.ndarray): Serach range. |
||
110 | """ |
||
111 | S = apply_along_axis(task.repair, 1, self.uniform(x - A, x + A, [self.n, task.D]), self.Rand) |
||
112 | S_fit = apply_along_axis(task.eval, 1, S) |
||
113 | iS = argmin(S_fit) |
||
114 | if S_fit[iS] < x_fit: x, x_fit, A = S[iS], S_fit[iS], self.C_a * A |
||
115 | else: A = self.C_r * A |
||
116 | return x, x_fit, {'A': A} |
||
117 | |||
118 | class FireworksAlgorithm(Algorithm): |
||
119 | r"""Implementation of fireworks algorithm. |
||
120 | |||
121 | Algorithm: |
||
122 | Fireworks Algorithm |
||
123 | |||
124 | Date: |
||
125 | 2018 |
||
126 | |||
127 | Authors: |
||
128 | Klemen Berkovič |
||
129 | |||
130 | License: |
||
131 | MIT |
||
132 | |||
133 | Reference URL: |
||
134 | https://www.springer.com/gp/book/9783662463529 |
||
135 | |||
136 | Reference paper: |
||
137 | Tan, Ying. "Firework Algorithm: A Novel Swarm Intelligence Optimization Method." (2015). |
||
138 | |||
139 | Attributes: |
||
140 | Name (List[str]): List of stirngs representing algorithm names. |
||
141 | """ |
||
142 | Name = ['FireworksAlgorithm', 'FWA'] |
||
143 | |||
144 | @staticmethod |
||
145 | def algorithmInfo(): |
||
146 | r"""Get default information of algorithm. |
||
147 | |||
148 | Returns: |
||
149 | str: Basic information. |
||
150 | |||
151 | See Also: |
||
152 | * :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
||
153 | """ |
||
154 | return r"""Tan, Ying. "Firework Algorithm: A Novel Swarm Intelligence Optimization Method." (2015).""" |
||
155 | |||
156 | @staticmethod |
||
157 | def typeParameters(): return { |
||
158 | 'N': lambda x: isinstance(x, int) and x > 0, |
||
159 | 'm': lambda x: isinstance(x, int) and x > 0, |
||
160 | 'a': lambda x: isinstance(x, (int, float)) and x > 0, |
||
161 | 'b': lambda x: isinstance(x, (int, float)) and x > 0, |
||
162 | 'epsilon': lambda x: isinstance(x, float) and 0 < x < 1 |
||
163 | } |
||
164 | |||
165 | def setParameters(self, N=40, m=40, a=1, b=2, A=40, epsilon=1e-31, **ukwargs): |
||
166 | r"""Set the arguments of an algorithm. |
||
167 | |||
168 | Arguments: |
||
169 | N (int): Number of Fireworks |
||
170 | m (int): Number of sparks |
||
171 | a (int): Limitation of sparks |
||
172 | b (int): Limitation of sparks |
||
173 | A (float): -- |
||
174 | epsilon (float): Small number for non 0 devision |
||
175 | """ |
||
176 | Algorithm.setParameters(self, NP=N, **ukwargs) |
||
177 | self.m, self.a, self.b, self.A, self.epsilon = m, a, b, A, epsilon |
||
178 | if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) |
||
179 | |||
180 | def initAmplitude(self, task): |
||
181 | r"""Initialize amplitudes for dimensions. |
||
182 | |||
183 | Args: |
||
184 | task (Task): Optimization task. |
||
185 | |||
186 | Returns: |
||
187 | numpy.ndarray[float]: Starting amplitudes. |
||
188 | """ |
||
189 | return fullArray(self.A, task.D) |
||
190 | |||
191 | def SparsksNo(self, x_f, xw_f, Ss): |
||
192 | r"""Calculate number of sparks based on function value of individual. |
||
193 | |||
194 | Args: |
||
195 | x_f (float): Individuals function/fitness value. |
||
196 | xw_f (float): Worst individual function/fitness value. |
||
197 | Ss (): TODO |
||
198 | |||
199 | Returns: |
||
200 | int: Number of sparks that individual will create. |
||
201 | """ |
||
202 | s = self.m * (xw_f - x_f + self.epsilon) / (Ss + self.epsilon) |
||
203 | return round(self.b * self.m) if s > self.b * self.m and self.a < self.b < 1 else round(self.a * self.m) |
||
204 | |||
205 | def ExplosionAmplitude(self, x_f, xb_f, A, As): |
||
206 | r"""Calculate explosion amplitude. |
||
207 | |||
208 | Args: |
||
209 | x_f (float): Individuals function/fitness value. |
||
210 | xb_f (float): Best individuals function/fitness value. |
||
211 | A (numpy.ndarray): Amplitudes. |
||
212 | As (): |
||
213 | |||
214 | Returns: |
||
215 | numpy.ndarray: TODO. |
||
216 | """ |
||
217 | return A * (x_f - xb_f - self.epsilon) / (As + self.epsilon) |
||
218 | |||
219 | def ExplodeSpark(self, x, A, task): |
||
220 | r"""Explode a spark. |
||
221 | |||
222 | Args: |
||
223 | x (numpy.ndarray): Individuals creating spark. |
||
224 | A (numpy.ndarray): Amplitude of spark. |
||
225 | task (Task): Optimization task. |
||
226 | |||
227 | Returns: |
||
228 | numpy.ndarray: Sparks exploded in with specified amplitude. |
||
229 | """ |
||
230 | return self.Mapping(x + self.rand(task.D) * self.uniform(-A, A, task.D), task) |
||
231 | |||
232 | def GaussianSpark(self, x, task): |
||
233 | r"""Create gaussian spark. |
||
234 | |||
235 | Args: |
||
236 | x (numpy.ndarray): Individual creating a spark. |
||
237 | task (Task): Optimization task. |
||
238 | |||
239 | Returns: |
||
240 | numpy.ndarray: Spark exploded based on gaussian amplitude. |
||
241 | """ |
||
242 | return self.Mapping(x + self.rand(task.D) * self.normal(1, 1, task.D), task) |
||
243 | |||
244 | View Code Duplication | def Mapping(self, x, task): |
|
|
|||
245 | r"""Fix value to bounds.. |
||
246 | |||
247 | Args: |
||
248 | x (numpy.ndarray): Individual to fix. |
||
249 | task (Task): Optimization task. |
||
250 | |||
251 | Returns: |
||
252 | numpy.ndarray: Individual in search range. |
||
253 | """ |
||
254 | ir = where(x > task.Upper) |
||
255 | x[ir] = task.Lower[ir] + x[ir] % task.bRange[ir] |
||
256 | ir = where(x < task.Lower) |
||
257 | x[ir] = task.Lower[ir] + x[ir] % task.bRange[ir] |
||
258 | return x |
||
259 | |||
260 | def R(self, x, FW): |
||
261 | r"""Calculate ranges. |
||
262 | |||
263 | Args: |
||
264 | x (numpy.ndarray): Individual in population. |
||
265 | FW (numpy.ndarray): Current population. |
||
266 | |||
267 | Returns: |
||
268 | numpy,ndarray[float]: Ranges values. |
||
269 | """ |
||
270 | return sqrt(sum(fabs(x - FW))) |
||
271 | |||
272 | def p(self, r, Rs): |
||
273 | r"""Calculate p. |
||
274 | |||
275 | Args: |
||
276 | r (float): Range of individual. |
||
277 | Rs (float): Sum of ranges. |
||
278 | |||
279 | Returns: |
||
280 | float: p value. |
||
281 | """ |
||
282 | return r / Rs |
||
283 | |||
284 | def NextGeneration(self, FW, FW_f, FWn, task): |
||
285 | r"""Generate new generation of individuals. |
||
286 | |||
287 | Args: |
||
288 | FW (numpy.ndarray): Current population. |
||
289 | FW_f (numpy.ndarray[float]): Currents population fitness/function values. |
||
290 | FWn (numpy.ndarray): New population. |
||
291 | task (Task): Optimization task. |
||
292 | |||
293 | Returns: |
||
294 | Tuple[numpy.ndarray, numpy.ndarray[float]]: |
||
295 | 1. New population. |
||
296 | 2. New populations fitness/function values. |
||
297 | """ |
||
298 | FWn_f = apply_along_axis(task.eval, 1, FWn) |
||
299 | ib = argmin(FWn_f) |
||
300 | if FWn_f[ib] < FW_f[0]: FW[0], FW_f[0] = FWn[ib], FWn_f[ib] |
||
301 | R = asarray([self.R(FWn[i], FWn) for i in range(len(FWn))]) |
||
302 | Rs = sum(R) |
||
303 | P = asarray([self.p(R[i], Rs) for i in range(len(FWn))]) |
||
304 | isort = argsort(P)[-(self.NP - 1):] |
||
305 | FW[1:], FW_f[1:] = asarray(FWn)[isort], FWn_f[isort] |
||
306 | return FW, FW_f |
||
307 | |||
308 | def initPopulation(self, task): |
||
309 | r"""Initialize starting population. |
||
310 | |||
311 | Args: |
||
312 | task (Task): Optimization task. |
||
313 | |||
314 | Returns: |
||
315 | Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
||
316 | 1. Initialized population. |
||
317 | 2. Initialized populations function/fitness values. |
||
318 | 3. Additional arguments: |
||
319 | * Ah (numpy.ndarray): Initialized amplitudes. |
||
320 | |||
321 | See Also: |
||
322 | * :func:`NiaPy.algorithms.algorithm.Algorithm.initPopulation` |
||
323 | """ |
||
324 | FW, FW_f, d = Algorithm.initPopulation(self, task) |
||
325 | Ah = self.initAmplitude(task) |
||
326 | d.update({'Ah': Ah}) |
||
327 | return FW, FW_f, d |
||
328 | |||
329 | def runIteration(self, task, FW, FW_f, xb, fxb, Ah, **dparams): |
||
330 | r"""Core function of Fireworks algorithm. |
||
331 | |||
332 | Args: |
||
333 | task (Task): Optimization task. |
||
334 | FW (numpy.ndarray): Current population. |
||
335 | FW_f (numpy.ndarray[float]): Current populations function/fitness values. |
||
336 | xb (numpy.ndarray): Global best individual. |
||
337 | fxb (float): Global best individuals fitness/function value. |
||
338 | Ah (numpy.ndarray): Current amplitudes. |
||
339 | **dparams (Dict[str, Any)]: Additional arguments |
||
340 | |||
341 | Returns: |
||
342 | Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
||
343 | 1. Initialized population. |
||
344 | 2. Initialized populations function/fitness values. |
||
345 | 3. Additional arguments: |
||
346 | * Ah (numpy.ndarray): Initialized amplitudes. |
||
347 | |||
348 | See Also: |
||
349 | * :func:`FireworksAlgorithm.SparsksNo`. |
||
350 | * :func:`FireworksAlgorithm.ExplosionAmplitude` |
||
351 | * :func:`FireworksAlgorithm.ExplodeSpark` |
||
352 | * :func:`FireworksAlgorithm.GaussianSpark` |
||
353 | * :func:`FireworksAlgorithm.NextGeneration` |
||
354 | """ |
||
355 | iw, ib = argmax(FW_f), 0 |
||
356 | Ss, As = sum(FW_f[iw] - FW_f), sum(FW_f - FW_f[ib]) |
||
357 | S = [self.SparsksNo(FW_f[i], FW_f[iw], Ss) for i in range(self.NP)] |
||
358 | A = [self.ExplosionAmplitude(FW_f[i], FW_f[ib], Ah, As) for i in range(self.NP)] |
||
359 | FWn = [self.ExplodeSpark(FW[i], A[i], task) for i in range(self.NP) for _ in range(S[i])] |
||
360 | for i in range(self.m): FWn.append(self.GaussianSpark(self.randint(self.NP), task)) |
||
361 | FW, FW_f = self.NextGeneration(FW, FW_f, FWn, task) |
||
362 | return FW, FW_f, {'Ah': Ah} |
||
363 | |||
364 | class EnhancedFireworksAlgorithm(FireworksAlgorithm): |
||
365 | r"""Implementation of enganced fireworks algorithm. |
||
366 | |||
367 | Algorithm: |
||
368 | Enhanced Fireworks Algorithm |
||
369 | |||
370 | Date: |
||
371 | 2018 |
||
372 | |||
373 | Authors: |
||
374 | Klemen Berkovič |
||
375 | |||
376 | License: |
||
377 | MIT |
||
378 | |||
379 | Reference URL: |
||
380 | https://ieeexplore.ieee.org/document/6557813/ |
||
381 | |||
382 | Reference paper: |
||
383 | S. Zheng, A. Janecek and Y. Tan, "Enhanced Fireworks Algorithm," 2013 IEEE Congress on Evolutionary Computation, Cancun, 2013, pp. 2069-2077. doi: 10.1109/CEC.2013.6557813 |
||
384 | |||
385 | Attributes: |
||
386 | Name (List[str]): List of strings representing algorithm names. |
||
387 | Ainit (float): Initial amplitude of sparks. |
||
388 | Afinal (float): Maximal amplitude of sparks. |
||
389 | """ |
||
390 | Name = ['EnhancedFireworksAlgorithm', 'EFWA'] |
||
391 | |||
392 | @staticmethod |
||
393 | def algorithmInfo(): |
||
394 | r"""Get default information of algorithm. |
||
395 | |||
396 | Returns: |
||
397 | str: Basic information. |
||
398 | |||
399 | See Also: |
||
400 | * :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
||
401 | """ |
||
402 | return r"""S. Zheng, A. Janecek and Y. Tan, "Enhanced Fireworks Algorithm," 2013 IEEE Congress on Evolutionary Computation, Cancun, 2013, pp. 2069-2077. doi: 10.1109/CEC.2013.6557813""" |
||
403 | |||
404 | @staticmethod |
||
405 | def typeParameters(): |
||
406 | r"""Get dictionary with functions for checking values of parameters. |
||
407 | |||
408 | Returns: |
||
409 | Dict[str, Callable]: |
||
410 | * Ainit (Callable[[Union[int, float]], bool]): TODO |
||
411 | * Afinal (Callable[[Union[int, float]], bool]): TODO |
||
412 | |||
413 | See Also: |
||
414 | * :func:`FireworksAlgorithm.typeParameters` |
||
415 | """ |
||
416 | d = FireworksAlgorithm.typeParameters() |
||
417 | d['Ainit'] = lambda x: isinstance(x, (float, int)) and x > 0 |
||
418 | d['Afinal'] = lambda x: isinstance(x, (float, int)) and x > 0 |
||
419 | return d |
||
420 | |||
421 | def setParameters(self, Ainit=20, Afinal=5, **ukwargs): |
||
422 | r"""Set EnhancedFireworksAlgorithm algorithms core parameters. |
||
423 | |||
424 | Args: |
||
425 | Ainit (float): TODO |
||
426 | Afinal (float): TODO |
||
427 | **ukwargs (Dict[str, Any]): Additional arguments. |
||
428 | |||
429 | See Also: |
||
430 | * :func:`FireworksAlgorithm.setParameters` |
||
431 | """ |
||
432 | FireworksAlgorithm.setParameters(self, **ukwargs) |
||
433 | self.Ainit, self.Afinal = Ainit, Afinal |
||
434 | |||
435 | def initRanges(self, task): |
||
436 | r"""Initialize ranges. |
||
437 | |||
438 | Args: |
||
439 | task (Task): Optimization task. |
||
440 | |||
441 | Returns: |
||
442 | Tuple[numpy.ndarray[float], numpy.ndarray[float], numpy.ndarray[float]]: |
||
443 | 1. Initial amplitude values over dimensions. |
||
444 | 2. Final amplitude values over dimensions. |
||
445 | 3. uAmin. |
||
446 | """ |
||
447 | Ainit, Afinal = fullArray(self.Ainit, task.D), fullArray(self.Afinal, task.D) |
||
448 | return Ainit, Afinal, self.uAmin(Ainit, Afinal, task) |
||
449 | |||
450 | def uAmin(self, Ainit, Afinal, task): |
||
451 | r"""Calculate the value of `uAmin`. |
||
452 | |||
453 | Args: |
||
454 | Ainit (numpy.ndarray[float]): Initial amplitude values over dimensions. |
||
455 | Afinal (numpy.ndarray[float]): Final amplitude values over dimensions. |
||
456 | task (Task): Optimization task. |
||
457 | |||
458 | Returns: |
||
459 | numpy.ndarray[float]: uAmin. |
||
460 | """ |
||
461 | return Ainit - sqrt(task.Evals * (2 * task.nFES - task.Evals)) * (Ainit - Afinal) / task.nFES |
||
462 | |||
463 | def ExplosionAmplitude(self, x_f, xb_f, Ah, As, A_min=None): |
||
464 | r"""Calculate explosion amplitude. |
||
465 | |||
466 | Args: |
||
467 | x_f (float): Individuals function/fitness value. |
||
468 | xb_f (float): Best individual function/fitness value. |
||
469 | Ah (numpy.ndarray): |
||
470 | As (): TODO. |
||
471 | A_min (Optional[numpy.ndarray]): Minimal amplitude values. |
||
472 | task (Task): Optimization task. |
||
473 | |||
474 | Returns: |
||
475 | numpy.ndarray: New amplitude. |
||
476 | """ |
||
477 | A = FireworksAlgorithm.ExplosionAmplitude(self, x_f, xb_f, Ah, As) |
||
478 | ifix = where(A < A_min) |
||
479 | A[ifix] = A_min[ifix] |
||
480 | return A |
||
481 | |||
482 | def GaussianSpark(self, x, xb, task): |
||
483 | r"""Create new individual. |
||
484 | |||
485 | Args: |
||
486 | x (numpy.ndarray): |
||
487 | xb (numpy.ndarray): |
||
488 | task (Task): Optimization task. |
||
489 | |||
490 | Returns: |
||
491 | numpy.ndarray: New individual generated by gaussian noise. |
||
492 | """ |
||
493 | return self.Mapping(x + self.rand(task.D) * (xb - x) * self.normal(1, 1, task.D), task) |
||
494 | |||
495 | def NextGeneration(self, FW, FW_f, FWn, task): |
||
496 | r"""Generate new population. |
||
497 | |||
498 | Args: |
||
499 | FW (numpy.ndarray): Current population. |
||
500 | FW_f (numpy.ndarray[float]): Current populations fitness/function values. |
||
501 | FWn (numpy.ndarray): New population. |
||
502 | task (Task): Optimization task. |
||
503 | |||
504 | Returns: |
||
505 | Tuple[numpy.ndarray, numpy.ndarray[float]]: |
||
506 | 1. New population. |
||
507 | 2. New populations fitness/function values. |
||
508 | """ |
||
509 | FWn_f = apply_along_axis(task.eval, 1, FWn) |
||
510 | ib = argmin(FWn_f) |
||
511 | if FWn_f[ib] < FW_f[0]: FW[0], FW_f[0] = FWn[ib], FWn_f[ib] |
||
512 | for i in range(1, self.NP): |
||
513 | r = self.randint(len(FWn)) |
||
514 | if FWn_f[r] < FW_f[i]: FW[i], FW_f[i] = FWn[r], FWn_f[r] |
||
515 | return FW, FW_f |
||
516 | |||
517 | def initPopulation(self, task): |
||
518 | r"""Initialize population. |
||
519 | |||
520 | Args: |
||
521 | task (Task): Optimization task. |
||
522 | |||
523 | Returns: |
||
524 | Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
||
525 | 1. Initial population. |
||
526 | 2. Initial populations fitness/function values. |
||
527 | 3. Additional arguments: |
||
528 | * Ainit (numpy.ndarray): Initial amplitude values. |
||
529 | * Afinal (numpy.ndarray): Final amplitude values. |
||
530 | * A_min (numpy.ndarray): Minimal amplitude values. |
||
531 | |||
532 | See Also: |
||
533 | * :func:`FireworksAlgorithm.initPopulation` |
||
534 | """ |
||
535 | FW, FW_f, d = FireworksAlgorithm.initPopulation(self, task) |
||
536 | Ainit, Afinal, A_min = self.initRanges(task) |
||
537 | d.update({'Ainit': Ainit, 'Afinal': Afinal, 'A_min': A_min}) |
||
538 | return FW, FW_f, d |
||
539 | |||
540 | def runIteration(self, task, FW, FW_f, xb, fxb, Ah, Ainit, Afinal, A_min, **dparams): |
||
541 | r"""Core function of EnhancedFireworksAlgorithm algorithm. |
||
542 | |||
543 | Args: |
||
544 | task (Task): Optimization task. |
||
545 | FW (numpy.ndarray): Current population. |
||
546 | FW_f (numpy.ndarray[float]): Current populations fitness/function values. |
||
547 | xb (numpy.ndarray): Global best individual. |
||
548 | fxb (float): Global best individuals function/fitness value. |
||
549 | Ah (numpy.ndarray[float]): Current amplitude. |
||
550 | Ainit (numpy.ndarray[float]): Initial amplitude. |
||
551 | Afinal (numpy.ndarray[float]): Final amplitude values. |
||
552 | A_min (numpy.ndarray[float]): Minial amplitude values. |
||
553 | **dparams (Dict[str, Any]): Additional arguments. |
||
554 | |||
555 | Returns: |
||
556 | Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
||
557 | 1. Initial population. |
||
558 | 2. Initial populations fitness/function values. |
||
559 | 3. Additional arguments: |
||
560 | * Ainit (numpy.ndarray): Initial amplitude values. |
||
561 | * Afinal (numpy.ndarray): Final amplitude values. |
||
562 | * A_min (numpy.ndarray): Minimal amplitude values. |
||
563 | """ |
||
564 | iw, ib = argmax(FW_f), 0 |
||
565 | Ss, As = sum(FW_f[iw] - FW_f), sum(FW_f - FW_f[ib]) |
||
566 | S = [self.SparsksNo(FW_f[i], FW_f[iw], Ss) for i in range(self.NP)] |
||
567 | A = [self.ExplosionAmplitude(FW_f[i], FW_f[ib], Ah, As, A_min) for i in range(self.NP)] |
||
568 | A_min = self.uAmin(Ainit, Afinal, task) |
||
569 | FWn = [self.ExplodeSpark(FW[i], A[i], task) for i in range(self.NP) for _ in range(S[i])] |
||
570 | for i in range(self.m): FWn.append(self.GaussianSpark(self.randint(self.NP), FW[ib], task)) |
||
571 | FW, FW_f = self.NextGeneration(FW, FW_f, FWn, task) |
||
572 | return FW, FW_f, {'Ah': Ah, 'Ainit': Ainit, 'Afinal': Afinal, 'A_min': A_min} |
||
573 | |||
574 | class DynamicFireworksAlgorithmGauss(EnhancedFireworksAlgorithm): |
||
575 | r"""Implementation of dynamic fireworks algorithm. |
||
576 | |||
577 | Algorithm: |
||
578 | Dynamic Fireworks Algorithm |
||
579 | |||
580 | Date: |
||
581 | 2018 |
||
582 | |||
583 | Authors: |
||
584 | Klemen Berkovič |
||
585 | |||
586 | License: |
||
587 | MIT |
||
588 | |||
589 | Reference URL: |
||
590 | http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6900485&isnumber=6900223 |
||
591 | |||
592 | Reference paper: |
||
593 | S. Zheng, A. Janecek, J. Li and Y. Tan, "Dynamic search in fireworks algorithm," 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, 2014, pp. 3222-3229. doi: 10.1109/CEC.2014.6900485 |
||
594 | |||
595 | Attributes: |
||
596 | Name (List[str]): List of strings representing algorithm names. |
||
597 | A_cf (Union[float, int]): TODO |
||
598 | C_a (Union[float, int]): Amplification factor. |
||
599 | C_r (Union[float, int]): Reduction factor. |
||
600 | epsilon (Union[float, int]): Small value. |
||
601 | """ |
||
602 | Name = ['DynamicFireworksAlgorithmGauss', 'dynFWAG'] |
||
603 | |||
604 | @staticmethod |
||
605 | def algorithmInfo(): |
||
606 | r"""Get default information of algorithm. |
||
607 | |||
608 | Returns: |
||
609 | str: Basic information. |
||
610 | |||
611 | See Also: |
||
612 | * :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
||
613 | """ |
||
614 | return r"""S. Zheng, A. Janecek, J. Li and Y. Tan, "Dynamic search in fireworks algorithm," 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, 2014, pp. 3222-3229. doi: 10.1109/CEC.2014.6900485""" |
||
615 | |||
616 | View Code Duplication | @staticmethod |
|
617 | def typeParameters(): |
||
618 | r"""Get dictionary with functions for checking values of parameters. |
||
619 | |||
620 | Returns: |
||
621 | Dict[str, Callable]: |
||
622 | * A_cr (Callable[[Union[float, int], bool]): TODo |
||
623 | |||
624 | See Also: |
||
625 | * :func:`FireworksAlgorithm.typeParameters` |
||
626 | """ |
||
627 | d = FireworksAlgorithm.typeParameters() |
||
628 | d['A_cf'] = lambda x: isinstance(x, (float, int)) and x > 0 |
||
629 | d['C_a'] = lambda x: isinstance(x, (float, int)) and x > 1 |
||
630 | d['C_r'] = lambda x: isinstance(x, (float, int)) and 0 < x < 1 |
||
631 | d['epsilon'] = lambda x: isinstance(x, (float, int)) and 0 < x < 1 |
||
632 | return d |
||
633 | |||
634 | def setParameters(self, A_cf=20, C_a=1.2, C_r=0.9, epsilon=1e-8, **ukwargs): |
||
635 | r"""Set core arguments of DynamicFireworksAlgorithmGauss. |
||
636 | |||
637 | Args: |
||
638 | A_cf (Union[int, float]): |
||
639 | C_a (Union[int, float]): |
||
640 | C_r (Union[int, float]): |
||
641 | epsilon (Union[int, float]): |
||
642 | **ukwargs (Dict[str, Any]): Additional arguments. |
||
643 | |||
644 | See Also: |
||
645 | * :func:`FireworksAlgorithm.setParameters` |
||
646 | """ |
||
647 | FireworksAlgorithm.setParameters(self, **ukwargs) |
||
648 | self.A_cf, self.C_a, self.C_r, self.epsilon = A_cf, C_a, C_r, epsilon |
||
649 | |||
650 | def initAmplitude(self, task): |
||
651 | r"""Initialize amplitude. |
||
652 | |||
653 | Args: |
||
654 | task (Task): Optimization task. |
||
655 | |||
656 | Returns: |
||
657 | Tuple[numpy.ndarray, numpy.ndarray]: |
||
658 | 1. Initial amplitudes. |
||
659 | 2. Amplitude for best spark. |
||
660 | """ |
||
661 | return FireworksAlgorithm.initAmplitude(self, task), task.bRange |
||
662 | |||
663 | def Mapping(self, x, task): |
||
664 | r"""Fix out of bound solution/individual. |
||
665 | |||
666 | Args: |
||
667 | x (numpy.ndarray): Individual. |
||
668 | task (Task): Optimization task. |
||
669 | |||
670 | Returns: |
||
671 | numpy.ndarray: Fixed individual. |
||
672 | """ |
||
673 | ir = where(x > task.Upper) |
||
674 | x[ir] = self.uniform(task.Lower[ir], task.Upper[ir]) |
||
675 | ir = where(x < task.Lower) |
||
676 | x[ir] = self.uniform(task.Lower[ir], task.Upper[ir]) |
||
677 | return x |
||
678 | |||
679 | def repair(self, x, d, epsilon): |
||
680 | r"""Repair solution. |
||
681 | |||
682 | Args: |
||
683 | x (numpy.ndarray): Individual. |
||
684 | d (numpy.ndarray): Default value. |
||
685 | epsilon (float): Limiting value. |
||
686 | |||
687 | Returns: |
||
688 | numpy.ndarray: Fixed solution. |
||
689 | """ |
||
690 | ir = where(x <= epsilon) |
||
691 | x[ir] = d[ir] |
||
692 | return x |
||
693 | |||
694 | def NextGeneration(self, FW, FW_f, FWn, task): |
||
695 | r"""TODO. |
||
696 | |||
697 | Args: |
||
698 | FW (numpy.ndarray): Current population. |
||
699 | FW_f (numpy.ndarray[float]): Current populations function/fitness values. |
||
700 | FWn (numpy.ndarray): New population. |
||
701 | task (Task): Optimization task. |
||
702 | |||
703 | Returns: |
||
704 | Tuple[numpy.ndarray, numpy.ndarray[float]]: |
||
705 | 1. New population. |
||
706 | 2. New populations function/fitness values. |
||
707 | """ |
||
708 | FWn_f = apply_along_axis(task.eval, 1, FWn) |
||
709 | ib = argmin(FWn_f) |
||
710 | for i, f in enumerate(FW_f): |
||
711 | r = self.randint(len(FWn)) |
||
712 | if FWn_f[r] < f: FW[i], FW_f[i] = FWn[r], FWn_f[r] |
||
713 | FW[0], FW_f[0] = FWn[ib], FWn_f[ib] |
||
714 | return FW, FW_f |
||
715 | |||
716 | def uCF(self, xnb, xcb, xcb_f, xb, xb_f, Acf, task): |
||
717 | r"""TODO. |
||
718 | |||
719 | Args: |
||
720 | xnb: |
||
721 | xcb: |
||
722 | xcb_f: |
||
723 | xb: |
||
724 | xb_f: |
||
725 | Acf: |
||
726 | task (Task): Optimization task. |
||
727 | |||
728 | Returns: |
||
729 | Tuple[numpy.ndarray, float, numpy.ndarray]: |
||
730 | 1. TODO |
||
731 | """ |
||
732 | xnb_f = apply_along_axis(task.eval, 1, xnb) |
||
733 | ib_f = argmin(xnb_f) |
||
734 | if xnb_f[ib_f] <= xb_f: xb, xb_f = xnb[ib_f], xnb_f[ib_f] |
||
735 | Acf = self.repair(Acf, task.bRange, self.epsilon) |
||
736 | if xb_f >= xcb_f: xb, xb_f, Acf = xcb, xcb_f, Acf * self.C_a |
||
737 | else: Acf = Acf * self.C_r |
||
738 | return xb, xb_f, Acf |
||
739 | |||
740 | def ExplosionAmplitude(self, x_f, xb_f, Ah, As, A_min=None): |
||
741 | return FireworksAlgorithm.ExplosionAmplitude(self, x_f, xb_f, Ah, As) |
||
742 | |||
743 | def initPopulation(self, task): |
||
744 | r"""Initialize population. |
||
745 | |||
746 | Args: |
||
747 | task (Task): Optimization task. |
||
748 | |||
749 | Returns: |
||
750 | Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
||
751 | 1. Initialized population. |
||
752 | 2. Initialized population function/fitness values. |
||
753 | 3. Additional arguments: |
||
754 | * Ah (): TODO |
||
755 | * Ab (): TODO |
||
756 | """ |
||
757 | FW, FW_f, _ = Algorithm.initPopulation(self, task) |
||
758 | Ah, Ab = self.initAmplitude(task) |
||
759 | return FW, FW_f, {'Ah': Ah, 'Ab': Ab} |
||
760 | |||
761 | def runIteration(self, task, FW, FW_f, xb, fxb, Ah, Ab, **dparams): |
||
762 | r"""Core function of DynamicFireworksAlgorithmGauss algorithm. |
||
763 | |||
764 | Args: |
||
765 | task (Task): Optimization task. |
||
766 | FW (numpy.ndarray): Current population. |
||
767 | FW_f (numpy.ndarray[float]): Current populations function/fitness values. |
||
768 | xb (numpy.ndarray): Global best individual. |
||
769 | fxb (float): Global best fitness/function value. |
||
770 | Ah (): TODO |
||
771 | Ab (): TODO |
||
772 | **dparams (Dict[str, Any]): Additional arguments. |
||
773 | |||
774 | Returns: |
||
775 | Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
||
776 | 1. New population. |
||
777 | 2. New populations fitness/function values. |
||
778 | 3. Additional arguments: |
||
779 | * Ah (): TODO |
||
780 | * Ab (): TODO |
||
781 | """ |
||
782 | iw, ib = argmax(FW_f), argmin(FW_f) |
||
783 | Ss, As = sum(FW_f[iw] - FW_f), sum(FW_f - FW_f[ib]) |
||
784 | S, sb = [self.SparsksNo(FW_f[i], FW_f[iw], Ss) for i in range(len(FW))], self.SparsksNo(fxb, FW_f[iw], Ss) |
||
785 | A = [self.ExplosionAmplitude(FW_f[i], FW_f[ib], Ah, As) for i in range(len(FW))] |
||
786 | FWn, xnb = [self.ExplodeSpark(FW[i], A[i], task) for i in range(self.NP) for _ in range(S[i])], [self.ExplodeSpark(xb, Ab, task) for _ in range(sb)] |
||
787 | for i in range(self.m): FWn.append(self.GaussianSpark(self.randint(self.NP), FW[ib], task)) |
||
788 | FW, FW_f = self.NextGeneration(FW, FW_f, FWn, task) |
||
789 | iw, ib = argmax(FW_f), 0 |
||
790 | _, _, Ab = self.uCF(xnb, FW[ib], FW_f[ib], xb, fxb, Ab, task) |
||
791 | return FW, FW_f, {'Ah': Ah, 'Ab': Ab} |
||
792 | |||
793 | class DynamicFireworksAlgorithm(DynamicFireworksAlgorithmGauss): |
||
794 | r"""Implementation of dynamic fireworks algorithm. |
||
795 | |||
796 | Algorithm: |
||
797 | Dynamic Fireworks Algorithm |
||
798 | |||
799 | Date: |
||
800 | 2018 |
||
801 | |||
802 | Authors: |
||
803 | Klemen Berkovič |
||
804 | |||
805 | License: |
||
806 | MIT |
||
807 | |||
808 | Reference URL: |
||
809 | http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6900485&isnumber=6900223 |
||
810 | |||
811 | Reference paper: |
||
812 | S. Zheng, A. Janecek, J. Li and Y. Tan, "Dynamic search in fireworks algorithm," 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, 2014, pp. 3222-3229. doi: 10.1109/CEC.2014.6900485 |
||
813 | |||
814 | Attributes: |
||
815 | Name (List[str]): List of strings representing algorithm name. |
||
816 | |||
817 | See Also: |
||
818 | * :class:`NiaPy.algorithms.basic.DynamicFireworksAlgorithmGauss` |
||
819 | """ |
||
820 | Name = ['DynamicFireworksAlgorithm', 'dynFWA'] |
||
821 | |||
822 | @staticmethod |
||
823 | def algorithmInfo(): |
||
824 | r"""Get default information of algorithm. |
||
825 | |||
826 | Returns: |
||
827 | str: Basic information. |
||
828 | |||
829 | See Also: |
||
830 | * :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
||
831 | """ |
||
832 | return r"""S. Zheng, A. Janecek, J. Li and Y. Tan, "Dynamic search in fireworks algorithm," 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, 2014, pp. 3222-3229. doi: 10.1109/CEC.2014.6900485""" |
||
833 | |||
834 | def runIteration(self, task, FW, FW_f, xb, fxb, Ah, Ab, **dparams): |
||
835 | r"""Core function of Dynamic Fireworks Algorithm. |
||
836 | |||
837 | Args: |
||
838 | task (Task): Optimization task |
||
839 | FW (numpy.ndarray): Current population |
||
840 | FW_f (numpy.ndarray[float]): Current population fitness/function values |
||
841 | xb (numpy.ndarray): Current best solution |
||
842 | fxb (float): Current best solution's fitness/function value |
||
843 | Ah (): TODO |
||
844 | Ab (): TODO |
||
845 | **dparams: |
||
846 | |||
847 | Returns: |
||
848 | Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
||
849 | 1. New population. |
||
850 | 2. New population function/fitness values. |
||
851 | 3. Additional arguments: |
||
852 | * Ah (): TODO |
||
853 | * Ab (): TODO |
||
854 | """ |
||
855 | iw, ib = argmax(FW_f), argmin(FW_f) |
||
856 | Ss, As = sum(FW_f[iw] - FW_f), sum(FW_f - FW_f[ib]) |
||
857 | S, sb = [self.SparsksNo(FW_f[i], FW_f[iw], Ss) for i in range(len(FW))], self.SparsksNo(fxb, FW_f[iw], Ss) |
||
858 | A = [self.ExplosionAmplitude(FW_f[i], FW_f[ib], Ah, As) for i in range(len(FW))] |
||
859 | FWn, xnb = [self.ExplodeSpark(FW[i], A[i], task) for i in range(self.NP) for _ in range(S[i])], [self.ExplodeSpark(xb, Ab, task) for _ in range(sb)] |
||
860 | FW, FW_f = self.NextGeneration(FW, FW_f, FWn, task) |
||
861 | iw, ib = argmax(FW_f), 0 |
||
862 | _, _, Ab = self.uCF(xnb, FW[ib], FW_f[ib], xb, fxb, Ab, task) |
||
863 | return FW, FW_f, {'Ah': Ah, 'Ab': Ab} |
||
864 | |||
866 |