Passed
Pull Request — master (#202)
by Grega
01:02
created

MothFlameOptimizer.algorithmInfo()   A

Complexity

Conditions 1

Size

Total Lines 11
Code Lines 3

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 3
nop 0
dl 0
loc 11
rs 10
c 0
b 0
f 0
1
# encoding=utf8
2
# pylint: disable=mixed-indentation, trailing-whitespace, multiple-statements, attribute-defined-outside-init, logging-not-lazy, no-self-use, line-too-long, arguments-differ, bad-continuation
3
import logging
4
5
from numpy import apply_along_axis, zeros, argsort, concatenate, array, exp, cos, pi
6
7
from NiaPy.algorithms.algorithm import Algorithm
8
9
logging.basicConfig()
10
logger = logging.getLogger('NiaPy.algorithms.basic')
11
logger.setLevel('INFO')
12
13
__all__ = ['MothFlameOptimizer']
14
15
class MothFlameOptimizer(Algorithm):
16
	r"""MothFlameOptimizer of Moth flame optimizer.
17
18
	Algorithm:
19
		Moth flame optimizer
20
21
	Date:
22
		2018
23
24
	Author:
25
		Kivanc Guckiran and Klemen Berkovič
26
27
	License:
28
		MIT
29
30
	Reference paper:
31
		Mirjalili, Seyedali. "Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm." Knowledge-Based Systems 89 (2015): 228-249.
32
33
	Attributes:
34
		Name (List[str]): List of strings representing algorithm name.
35
36
	See Also:
37
		* :class:`NiaPy.algorithms.algorithm.Algorithm`
38
	"""
39
	Name = ['MothFlameOptimizer', 'MFO']
40
41
	@staticmethod
42
	def algorithmInfo():
43
		r"""Get basic information of algorithm.
44
45
		Returns:
46
			str: Basic information.
47
48
		See Also:
49
			* :func:`NiaPy.algorithms.Algorithm.algorithmInfo`
50
		"""
51
		return r"""Mirjalili, Seyedali. "Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm." Knowledge-Based Systems 89 (2015): 228-249."""
52
53
	@staticmethod
54
	def typeParameters():
55
		r"""Get dictionary with functions for checking values of parameters.
56
57
		Returns:
58
			Dict[str, Callable]: TODO
59
60
		See Also:
61
			* :func:`NiaPy.algorithms.algorithm.Algorithm.typeParameters`
62
		"""
63
		return Algorithm.typeParameters()
64
65
	def setParameters(self, NP=25, **ukwargs):
66
		r"""Set the algorithm parameters.
67
68
		Arguments:
69
			NP (int): Number of individuals in population
70
71
		See Also:
72
			* :func:`NiaPy.algorithms.algorithm.Algorithm.setParameters`
73
		"""
74
		Algorithm.setParameters(self, NP=NP, **ukwargs)
75
		if ukwargs: logger.info('Unused arguments: %s' % (ukwargs))
76
77
	def initPopulation(self, task):
78
		r"""Initialize starting population.
79
80
		Args:
81
			task (Task): Optimization task
82
83
		Returns:
84
			Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]:
85
				1. Initialized population
86
				2. Initialized population function/fitness values
87
				3. Additional arguments:
88
					* best_flames (numpy.ndarray): Best individuals
89
					* best_flame_fitness (numpy.ndarray): Best individuals fitness/function values
90
					* previous_population (numpy.ndarray): Previous population
91
					* previous_fitness (numpy.ndarray[float]): Previous population fitness/function values
92
93
		See Also:
94
			* :func:`NiaPy.algorithms.algorithm.Algorithm.initPopulation`
95
		"""
96
		moth_pos, moth_fitness, d = Algorithm.initPopulation(self, task)
97
		# Create best population
98
		indexes = argsort(moth_fitness)
99
		best_flames, best_flame_fitness = moth_pos[indexes], moth_fitness[indexes]
100
		# Init previous population
101
		previous_population, previous_fitness = zeros((self.NP, task.D)), zeros(self.NP)
102
		d.update({'best_flames': best_flames, 'best_flame_fitness': best_flame_fitness, 'previous_population': previous_population, 'previous_fitness': previous_fitness})
103
		return moth_pos, moth_fitness, d
104
105
	def runIteration(self, task, moth_pos, moth_fitness, xb, fxb, best_flames, best_flame_fitness, previous_population, previous_fitness, **dparams):
106
		r"""Core function of MothFlameOptimizer algorithm.
107
108
		Args:
109
			task (Task): Optimization task.
110
			moth_pos (numpy.ndarray): Current population.
111
			moth_fitness (numpy.ndarray[float]): Current population fitness/function values.
112
			xb (numpy.ndarray): Current population best individual.
113
			fxb (float): Current best individual
114
			best_flames (numpy.ndarray): Best found individuals
115
			best_flame_fitness (numpy.ndarray[float]): Best found individuals fitness/function values
116
			previous_population (numpy.ndarray): Previous population
117
			previous_fitness (numpy.ndarray[float]): Previous population fitness/function values
118
			**dparams (Dict[str, Any]): Additional parameters
119
120
		Returns:
121
			Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]:
122
				1. New population.
123
				2. New population fitness/function values.
124
				3. Additional arguments:
125
					* best_flames (numpy.ndarray): Best individuals.
126
					* best_flame_fitness (numpy.ndarray[float]): Best individuals fitness/function values.
127
					* previous_population (numpy.ndarray): Previous population.
128
					* previous_fitness (numpy.ndarray[float]): Previous population fitness/function values.
129
		"""
130
		# Previous positions
131
		previous_population, previous_fitness = moth_pos, moth_fitness
132
		# Create sorted population
133
		indexes = argsort(moth_fitness)
134
		sorted_population = moth_pos[indexes]
135
		# Some parameters
136
		flame_no, a = round(self.NP - task.Iters * ((self.NP - 1) / task.nGEN)), -1 + task.Iters * ((-1) / task.nGEN)
137
		for i in range(self.NP):
138
			for j in range(task.D):
139
				distance_to_flame, b, t = abs(sorted_population[i, j] - moth_pos[i, j]), 1, (a - 1) * self.rand() + 1
140
				if i <= flame_no: moth_pos[i, j] = distance_to_flame * exp(b * t) * cos(2 * pi * t) + sorted_population[i, j]
141
				else: moth_pos[i, j] = distance_to_flame * exp(b * t) * cos(2 * pi * t) + sorted_population[flame_no, j]
142
		moth_pos = apply_along_axis(task.repair, 1, moth_pos, self.Rand)
143
		moth_fitness = apply_along_axis(task.eval, 1, moth_pos)
144
		double_population, double_fitness = concatenate((previous_population, best_flames), axis=0), concatenate((previous_fitness, best_flame_fitness), axis=0)
145
		indexes = argsort(double_fitness)
146
		double_sorted_fitness, double_sorted_population = double_fitness[indexes], double_population[indexes]
147
		for newIdx in range(2 * self.NP): double_sorted_population[newIdx] = array(double_population[indexes[newIdx], :])
148
		best_flame_fitness, best_flames = double_sorted_fitness[:self.NP], double_sorted_population[:self.NP]
149
		return moth_pos, moth_fitness, {'best_flames': best_flames, 'best_flame_fitness': best_flame_fitness, 'previous_population': previous_population, 'previous_fitness': previous_fitness}
150
151
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
152