1
|
|
|
# encoding=utf8 |
2
|
|
|
import logging |
3
|
|
|
|
4
|
|
|
from numpy import full |
5
|
|
|
|
6
|
|
|
from NiaPy.algorithms.algorithm import Algorithm |
7
|
|
|
|
8
|
|
|
logging.basicConfig() |
9
|
|
|
logger = logging.getLogger('NiaPy.algorithms.modified') |
10
|
|
|
logger.setLevel('INFO') |
11
|
|
|
|
12
|
|
|
__all__ = ['ParameterFreeBatAlgorithm'] |
13
|
|
|
|
14
|
|
|
class ParameterFreeBatAlgorithm(Algorithm): |
15
|
|
|
r"""Implementation of Parameter-free Bat algorithm. |
16
|
|
|
|
17
|
|
|
Algorithm: |
18
|
|
|
Parameter-free Bat algorithm |
19
|
|
|
|
20
|
|
|
Date: |
21
|
|
|
2020 |
22
|
|
|
|
23
|
|
|
Authors: |
24
|
|
|
Iztok Fister Jr. |
25
|
|
|
This implementation is based on the implementation of basic BA from NiaPy |
26
|
|
|
|
27
|
|
|
License: |
28
|
|
|
MIT |
29
|
|
|
|
30
|
|
|
Reference paper: |
31
|
|
|
Iztok Fister Jr., Iztok Fister, Xin-She Yang. Towards the development of a parameter-free bat algorithm . In: FISTER Jr., Iztok (Ed.), BRODNIK, Andrej (Ed.). StuCoSReC : proceedings of the 2015 2nd Student Computer Science Research Conference. Koper: University of Primorska, 2015, pp. 31-34. |
32
|
|
|
|
33
|
|
|
Attributes: |
34
|
|
|
Name (List[str]): List of strings representing algorithm name. |
35
|
|
|
|
36
|
|
|
See Also: |
37
|
|
|
* :class:`NiaPy.algorithms.Algorithm` |
38
|
|
|
""" |
39
|
|
|
Name = ['ParameterFreeBatAlgorithm', 'PLBA'] |
40
|
|
|
|
41
|
|
|
@staticmethod |
42
|
|
|
def algorithmInfo(): |
43
|
|
|
r"""Get algorithms information. |
44
|
|
|
|
45
|
|
|
Returns: |
46
|
|
|
str: Algorithm information. |
47
|
|
|
|
48
|
|
|
See Also: |
49
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
50
|
|
|
""" |
51
|
|
|
return r"""Iztok Fister Jr., Iztok Fister, Xin-She Yang. Towards the development of a parameter-free bat algorithm . In: FISTER, Iztok (Ed.), BRODNIK, Andrej (Ed.). StuCoSReC : proceedings of the 2015 2nd Student Computer Science Research Conference. Koper: University of Primorska, 2015, pp. 31-34.""" |
52
|
|
|
|
53
|
|
|
def setParameters(self, **ukwargs): |
54
|
|
|
r"""Set the parameters of the algorithm. |
55
|
|
|
|
56
|
|
|
Args: |
57
|
|
|
A (Optional[float]): Loudness. |
58
|
|
|
r (Optional[float]): Pulse rate. |
59
|
|
|
See Also: |
60
|
|
|
* :func:`NiaPy.algorithms.Algorithm.setParameters` |
61
|
|
|
""" |
62
|
|
|
Algorithm.setParameters(self, NP=80, **ukwargs) |
63
|
|
|
self.A, self.r = 0.9, 0.1 |
64
|
|
|
|
65
|
|
View Code Duplication |
def initPopulation(self, task): |
|
|
|
|
66
|
|
|
r"""Initialize the initial population. |
67
|
|
|
|
68
|
|
|
Parameters: |
69
|
|
|
task (Task): Optimization task |
70
|
|
|
|
71
|
|
|
Returns: |
72
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
73
|
|
|
1. New population. |
74
|
|
|
2. New population fitness/function values. |
75
|
|
|
3. Additional arguments: |
76
|
|
|
* S (numpy.ndarray): Solutions |
77
|
|
|
* Q (numpy.ndarray[float]): Frequencies |
78
|
|
|
* v (numpy.ndarray[float]): Velocities |
79
|
|
|
|
80
|
|
|
See Also: |
81
|
|
|
* :func:`NiaPy.algorithms.Algorithm.initPopulation` |
82
|
|
|
""" |
83
|
|
|
Sol, Fitness, d = Algorithm.initPopulation(self, task) |
84
|
|
|
S, Q, v = full([self.NP, task.D], 0.0), full(self.NP, 0.0), full([self.NP, task.D], 0.0) |
85
|
|
|
d.update({'S': S, 'Q': Q, 'v': v}) |
86
|
|
|
return Sol, Fitness, d |
87
|
|
|
|
88
|
|
|
def localSearch(self, best, task, **kwargs): |
89
|
|
|
r"""Improve the best solution according to the Yang (2010). |
90
|
|
|
|
91
|
|
|
Args: |
92
|
|
|
best (numpy.ndarray): Global best individual. |
93
|
|
|
task (Task): Optimization task. |
94
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
95
|
|
|
|
96
|
|
|
Returns: |
97
|
|
|
numpy.ndarray: New solution based on global best individual. |
98
|
|
|
""" |
99
|
|
|
return task.repair(best + 0.001 * self.normal(0, 1, task.D)) |
100
|
|
|
|
101
|
|
|
def runIteration(self, task, Sol, Fitness, xb, fxb, S, Q, v, **dparams): |
102
|
|
|
r"""Core function of Parameter-free Bat Algorithm. |
103
|
|
|
|
104
|
|
|
Parameters: |
105
|
|
|
task (Task): Optimization task. |
106
|
|
|
Sol (numpy.ndarray): Current population |
107
|
|
|
Fitness (numpy.ndarray[float]): Current population fitness/funciton values |
108
|
|
|
best (numpy.ndarray): Current best individual |
109
|
|
|
f_min (float): Current best individual function/fitness value |
110
|
|
|
S (numpy.ndarray): Solutions |
111
|
|
|
Q (numpy.ndarray): Frequencies |
112
|
|
|
v (numpy.ndarray): Velocities |
113
|
|
|
best (numpy.ndarray): Global best used by the algorithm |
114
|
|
|
f_min (float): Global best fitness value used by the algorithm |
115
|
|
|
dparams (Dict[str, Any]): Additional algorithm arguments |
116
|
|
|
|
117
|
|
|
Returns: |
118
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, Dict[str, Any]]: |
119
|
|
|
1. New population |
120
|
|
|
2. New population fitness/function vlues |
121
|
|
|
3. New global best solution |
122
|
|
|
4. New global best fitness/objective value |
123
|
|
|
5. Additional arguments: |
124
|
|
|
* S (numpy.ndarray): Solutions |
125
|
|
|
* Q (numpy.ndarray): Frequencies |
126
|
|
|
* v (numpy.ndarray): Velocities |
127
|
|
|
* best (numpy.ndarray): Global best |
128
|
|
|
* f_min (float): Global best fitness |
129
|
|
|
""" |
130
|
|
|
upper, lower = task.bcUpper(), task.bcLower() |
131
|
|
|
for i in range(self.NP): |
132
|
|
|
Q[i] = ((upper[0] - lower[0]) / float(self.NP)) * self.normal(0, 1) |
133
|
|
|
v[i] += (Sol[i] - xb) * Q[i] |
134
|
|
|
if self.rand() > self.r: S[i] = self.localSearch(best=xb, task=task, i=i, Sol=Sol) |
135
|
|
|
else: S[i] = task.repair(Sol[i] + v[i], rnd=self.Rand) |
136
|
|
|
Fnew = task.eval(S[i]) |
137
|
|
|
if (Fnew <= Fitness[i]) and (self.rand() < self.A): Sol[i], Fitness[i] = S[i], Fnew |
138
|
|
|
if Fnew <= fxb: xb, fxb = S[i].copy(), Fnew |
139
|
|
|
return Sol, Fitness, xb, fxb, {'S': S, 'Q': Q, 'v': v} |
140
|
|
|
|
141
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
142
|
|
|
|