examples/runner.py 1 location
|
@@ 24-33 (lines=10) @@
|
21 |
|
|
22 |
|
"""Example demonstrating the use of NiaPy Runner.""" |
23 |
|
|
24 |
|
class MyBenchmark(Benchmark): |
25 |
|
def __init__(self): |
26 |
|
Benchmark.__init__(self, -10, 10) |
27 |
|
|
28 |
|
def function(self): |
29 |
|
def evaluate(D, sol): |
30 |
|
val = 0.0 |
31 |
|
for i in range(D): val += sol[i] ** 2 |
32 |
|
return val |
33 |
|
return evaluate |
34 |
|
|
35 |
|
runner = Runner( |
36 |
|
D=40, |
examples/advanced_example_custom_pop.py 1 location
|
@@ 13-22 (lines=10) @@
|
10 |
|
from numpy import random as rand, apply_along_axis |
11 |
|
|
12 |
|
# our custom benchmark class |
13 |
|
class MyBenchmark(Benchmark): |
14 |
|
def __init__(self): |
15 |
|
Benchmark.__init__(self, -10, 10) |
16 |
|
|
17 |
|
def function(self): |
18 |
|
def evaluate(D, sol): |
19 |
|
val = 0.0 |
20 |
|
for i in range(D): val += sol[i] ** 2 |
21 |
|
return val |
22 |
|
return evaluate |
23 |
|
|
24 |
|
|
25 |
|
# custom initialization population function |
examples/advanced_example.py 1 location
|
@@ 12-21 (lines=10) @@
|
9 |
|
from NiaPy.algorithms.basic import GreyWolfOptimizer |
10 |
|
|
11 |
|
# our custom benchmark class |
12 |
|
class MyBenchmark(Benchmark): |
13 |
|
def __init__(self): |
14 |
|
Benchmark.__init__(self, -10, 10) |
15 |
|
|
16 |
|
def function(self): |
17 |
|
def evaluate(D, sol): |
18 |
|
val = 0.0 |
19 |
|
for i in range(D): val += sol[i] ** 2 |
20 |
|
return val |
21 |
|
return evaluate |
22 |
|
|
23 |
|
|
24 |
|
# we will run 10 repetitions of Grey Wolf Optimizer against our custom MyBenchmark benchmark function |
examples/custom_benchmark.py 1 location
|
@@ 11-20 (lines=10) @@
|
8 |
|
from NiaPy.benchmarks import Benchmark |
9 |
|
from NiaPy.algorithms.basic import ParticleSwarmAlgorithm |
10 |
|
|
11 |
|
class MyBenchmark(Benchmark): |
12 |
|
def __init__(self): |
13 |
|
Benchmark.__init__(self, -10, 10) |
14 |
|
|
15 |
|
def function(self): |
16 |
|
def evaluate(D, sol): |
17 |
|
val = 0.0 |
18 |
|
for i in range(D): val += sol[i] ** 2 |
19 |
|
return val |
20 |
|
return evaluate |
21 |
|
|
22 |
|
|
23 |
|
# we will run Particle Swarm Algorithm with on custom benchmark |