Code Duplication    Length = 13-14 lines in 3 locations

NiaPy/algorithms/modified/hba.py 1 location

@@ 60-73 (lines=14) @@
57
            self.best[i] = self.Sol[j][i]
58
        self.f_min = self.Fitness[j]
59
60
    def init_bat(self):
61
        for i in range(self.D):
62
            self.Lb[i] = self.Lower
63
            self.Ub[i] = self.Upper
64
65
        for i in range(self.NP):
66
            self.Q[i] = 0
67
            for j in range(self.D):
68
                rnd = random.uniform(0, 1)
69
                self.v[i][j] = 0.0
70
                self.Sol[i][j] = self.Lb[j] + (self.Ub[j] - self.Lb[j]) * rnd
71
            self.Fitness[i] = self.Fun(self.D, self.Sol[i])
72
            self.evaluations = self.evaluations + 1
73
        self.best_bat()
74
75
    @classmethod
76
    def simplebounds(cls, val, lower, upper):

NiaPy/algorithms/basic/ba.py 1 location

@@ 57-70 (lines=14) @@
54
                self.Fun = Griewank().function()
55
            elif function == 'sphere':
56
                self.Fun = Sphere().function()
57
            else:
58
                raise TypeError('Passed benchmark is not defined!')
59
60
    def best_bat(self):
61
        i = 0
62
        j = 0
63
        for i in range(self.NP):
64
            if self.Fitness[i] < self.Fitness[j]:
65
                j = i
66
        for i in range(self.D):
67
            self.best[i] = self.Sol[j][i]
68
        self.f_min = self.Fitness[j]
69
70
    def init_bat(self):
71
        for i in range(self.D):
72
            self.Lb[i] = self.Lower
73
            self.Ub[i] = self.Upper

NiaPy/algorithms/basic/fpa.py 1 location

@@ 66-78 (lines=13) @@
63
            val = upper
64
        return val
65
66
    def init_flower(self):
67
        for i in range(self.D):
68
            self.Lb[i] = self.Lower
69
            self.Ub[i] = self.Upper
70
71
        for i in range(self.NP):
72
            for j in range(self.D):
73
                rnd = random.uniform(0, 1)
74
                self.dS[i][j] = 0.0
75
                self.Sol[i][j] = self.Lb[j] + (self.Ub[j] - self.Lb[j]) * rnd
76
            self.Fitness[i] = self.Fun(self.D, self.Sol[i])
77
            self.evaluations = self.evaluations + 1
78
        self.best_flower()
79
80
    def move_flower(self):
81
        S = [[0.0 for i in range(self.D)] for j in range(self.NP)]