1
|
|
|
# encoding=utf8 |
2
|
|
|
|
3
|
|
|
"""Implementation of Runner utility class.""" |
4
|
|
|
|
5
|
|
|
from __future__ import print_function |
6
|
|
|
|
7
|
|
|
import datetime |
8
|
|
|
import os |
9
|
|
|
import logging |
10
|
|
|
|
11
|
|
|
import pandas as pd |
12
|
|
|
|
13
|
|
|
from NiaPy.task import StoppingTask, OptimizationType |
14
|
|
|
from NiaPy.algorithms import AlgorithmUtility |
15
|
|
|
|
16
|
|
|
logging.basicConfig() |
17
|
|
|
logger = logging.getLogger('NiaPy.runner.Runner') |
18
|
|
|
logger.setLevel('INFO') |
19
|
|
|
|
20
|
|
|
__all__ = ["Runner"] |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
class Runner: |
24
|
|
|
r"""Runner utility feature. |
25
|
|
|
|
26
|
|
|
Feature which enables running multiple algorithms with multiple benchmarks. |
27
|
|
|
It also support exporting results in various formats (e.g. Pandas DataFrame, JSON, Excel) |
28
|
|
|
|
29
|
|
|
Attributes: |
30
|
|
|
D (int): Dimension of problem |
31
|
|
|
NP (int): Population size |
32
|
|
|
nFES (int): Number of function evaluations |
33
|
|
|
nRuns (int): Number of repetitions |
34
|
|
|
useAlgorithms (Union[List[str], List[Algorithm]]): List of algorithms to run |
35
|
|
|
useBenchmarks (Union[List[str], List[Benchmark]]): List of benchmarks to run |
36
|
|
|
|
37
|
|
|
Returns: |
38
|
|
|
results (Dict[str, Dict]): Returns the results. |
39
|
|
|
|
40
|
|
|
""" |
41
|
|
|
|
42
|
|
|
def __init__(self, D=10, nFES=1000000, nRuns=1, useAlgorithms='ArtificialBeeColonyAlgorithm', useBenchmarks='Ackley', **kwargs): |
43
|
|
|
r"""Initialize Runner. |
44
|
|
|
|
45
|
|
|
Args: |
46
|
|
|
D (int): Dimension of problem |
47
|
|
|
nFES (int): Number of function evaluations |
48
|
|
|
nRuns (int): Number of repetitions |
49
|
|
|
useAlgorithms (List[Algorithm]): List of algorithms to run |
50
|
|
|
useBenchmarks (List[Benchmarks]): List of benchmarks to run |
51
|
|
|
|
52
|
|
|
""" |
53
|
|
|
|
54
|
|
|
self.D = D |
55
|
|
|
self.nFES = nFES |
56
|
|
|
self.nRuns = nRuns |
57
|
|
|
self.useAlgorithms = useAlgorithms |
58
|
|
|
self.useBenchmarks = useBenchmarks |
59
|
|
|
self.results = {} |
60
|
|
|
|
61
|
|
|
def benchmark_factory(self, name): |
62
|
|
|
r"""Create optimization task. |
63
|
|
|
|
64
|
|
|
Args: |
65
|
|
|
name (str): Benchmark name. |
66
|
|
|
|
67
|
|
|
Returns: |
68
|
|
|
Task: Optimization task to use. |
69
|
|
|
|
70
|
|
|
""" |
71
|
|
|
return StoppingTask(D=self.D, nFES=self.nFES, optType=OptimizationType.MINIMIZATION, benchmark=name) |
72
|
|
|
|
73
|
|
|
@classmethod |
74
|
|
|
def __create_export_dir(cls): |
75
|
|
|
r"""Create export directory if not already createed.""" |
76
|
|
|
if not os.path.exists("export"): |
77
|
|
|
os.makedirs("export") |
78
|
|
|
|
79
|
|
|
@classmethod |
80
|
|
|
def __generate_export_name(cls, extension): |
81
|
|
|
r"""Generate export file name. |
82
|
|
|
|
83
|
|
|
Args: |
84
|
|
|
extension (str): File format. |
85
|
|
|
|
86
|
|
|
Returns: |
87
|
|
|
|
88
|
|
|
""" |
89
|
|
|
|
90
|
|
|
Runner.__create_export_dir() |
91
|
|
|
return "export/" + str(datetime.datetime.now()).replace(":", ".") + "." + extension |
92
|
|
|
|
93
|
|
|
def __export_to_dataframe_pickle(self): |
94
|
|
|
r"""Export the results in the pandas dataframe pickle. |
95
|
|
|
|
96
|
|
|
See Also: |
97
|
|
|
* :func:`NiaPy.Runner.__createExportDir` |
98
|
|
|
* :func:`NiaPy.Runner.__generateExportName` |
99
|
|
|
|
100
|
|
|
""" |
101
|
|
|
|
102
|
|
|
dataframe = pd.DataFrame.from_dict(self.results) |
103
|
|
|
dataframe.to_pickle(self.__generate_export_name("pkl")) |
104
|
|
|
logger.info("Export to Pandas DataFrame pickle (pkl) completed!") |
105
|
|
|
|
106
|
|
|
def __export_to_json(self): |
107
|
|
|
r"""Export the results in the JSON file. |
108
|
|
|
|
109
|
|
|
See Also: |
110
|
|
|
* :func:`NiaPy.Runner.__createExportDir` |
111
|
|
|
* :func:`NiaPy.Runner.__generateExportName` |
112
|
|
|
|
113
|
|
|
""" |
114
|
|
|
|
115
|
|
|
dataframe = pd.DataFrame.from_dict(self.results) |
116
|
|
|
dataframe.to_json(self.__generate_export_name("json")) |
117
|
|
|
logger.info("Export to JSON file completed!") |
118
|
|
|
|
119
|
|
|
def _export_to_xls(self): |
120
|
|
|
r"""Export the results in the xls file. |
121
|
|
|
|
122
|
|
|
See Also: |
123
|
|
|
* :func:`NiaPy.Runner.__createExportDir` |
124
|
|
|
* :func:`NiaPy.Runner.__generateExportName` |
125
|
|
|
|
126
|
|
|
""" |
127
|
|
|
|
128
|
|
|
dataframe = pd.DataFrame.from_dict(self.results) |
129
|
|
|
dataframe.to_excel(self.__generate_export_name("xls")) |
130
|
|
|
logger.info("Export to XLS completed!") |
131
|
|
|
|
132
|
|
|
def __export_to_xlsx(self): |
133
|
|
|
r"""Export the results in the xlsx file. |
134
|
|
|
|
135
|
|
|
See Also: |
136
|
|
|
* :func:`NiaPy.Runner.__createExportDir` |
137
|
|
|
* :func:`NiaPy.Runner.__generateExportName` |
138
|
|
|
|
139
|
|
|
""" |
140
|
|
|
|
141
|
|
|
dataframe = pd.DataFrame.from_dict(self.results) |
142
|
|
|
dataframe.to_excel(self.__generate_export_name("xslx")) |
143
|
|
|
logger.info("Export to XLSX file completed!") |
144
|
|
|
|
145
|
|
|
def run(self, export="dataframe", verbose=False): |
146
|
|
|
"""Execute runner. |
147
|
|
|
|
148
|
|
|
Arguments: |
149
|
|
|
export (str): Takes export type (e.g. dataframe, json, xls, xlsx) (default: "dataframe") |
150
|
|
|
verbose (bool): Switch for verbose logging (default: {False}) |
151
|
|
|
|
152
|
|
|
Raises: |
153
|
|
|
TypeError: Raises TypeError if export type is not supported |
154
|
|
|
|
155
|
|
|
Returns: |
156
|
|
|
dict: Returns dictionary of results |
157
|
|
|
|
158
|
|
|
See Also: |
159
|
|
|
* :func:`NiaPy.Runner.useAlgorithms` |
160
|
|
|
* :func:`NiaPy.Runner.useBenchmarks` |
161
|
|
|
* :func:`NiaPy.Runner.__algorithmFactory` |
162
|
|
|
|
163
|
|
|
""" |
164
|
|
|
|
165
|
|
|
for alg in self.useAlgorithms: |
166
|
|
|
if not isinstance(alg, "".__class__): |
167
|
|
|
alg_name = str(type(alg).__name__) |
168
|
|
|
else: |
169
|
|
|
alg_name = alg |
170
|
|
|
|
171
|
|
|
self.results[alg_name] = {} |
172
|
|
|
|
173
|
|
|
if verbose: |
174
|
|
|
logger.info("Running %s...", alg_name) |
175
|
|
|
|
176
|
|
|
for bench in self.useBenchmarks: |
177
|
|
|
if not isinstance(bench, "".__class__): |
178
|
|
|
bench_name = str(type(bench).__name__) |
179
|
|
|
else: |
180
|
|
|
bench_name = bench |
181
|
|
|
|
182
|
|
|
if verbose: |
183
|
|
|
logger.info("Running %s algorithm on %s benchmark...", alg_name, bench_name) |
184
|
|
|
|
185
|
|
|
self.results[alg_name][bench_name] = [] |
186
|
|
|
for _ in range(self.nRuns): |
187
|
|
|
algorithm = AlgorithmUtility().get_algorithm(alg) |
188
|
|
|
benchmark_stopping_task = self.benchmark_factory(bench) |
189
|
|
|
self.results[alg_name][bench_name].append(algorithm.run(benchmark_stopping_task)) |
190
|
|
|
if verbose: |
191
|
|
|
logger.info("---------------------------------------------------") |
192
|
|
|
if export == "dataframe": |
193
|
|
|
self.__export_to_dataframe_pickle() |
194
|
|
|
elif export == "json": |
195
|
|
|
self.__export_to_json() |
196
|
|
|
elif export == "xsl": |
197
|
|
|
self._export_to_xls() |
198
|
|
|
elif export == "xlsx": |
199
|
|
|
self.__export_to_xlsx() |
200
|
|
|
else: |
201
|
|
|
raise TypeError("Passed export type %s is not supported!", export) |
202
|
|
|
return self.results |
203
|
|
|
|