|
1
|
|
|
# encoding=utf8 |
|
2
|
|
|
|
|
3
|
|
|
"""Implementations of Perm function.""" |
|
4
|
|
|
|
|
5
|
|
|
from NiaPy.benchmarks.benchmark import Benchmark |
|
6
|
|
|
|
|
7
|
|
|
__all__ = ['Perm'] |
|
8
|
|
|
|
|
9
|
|
|
class Perm(Benchmark): |
|
10
|
|
|
r"""Implementations of Perm functions. |
|
11
|
|
|
|
|
12
|
|
|
Date: 2018 |
|
13
|
|
|
|
|
14
|
|
|
Author: Klemen Berkovič |
|
15
|
|
|
|
|
16
|
|
|
License: MIT |
|
17
|
|
|
|
|
18
|
|
|
Arguments: |
|
19
|
|
|
beta {real} -- value added to inner sum of funciton |
|
20
|
|
|
|
|
21
|
|
|
Function: |
|
22
|
|
|
**Perm Function** |
|
23
|
|
|
|
|
24
|
|
|
:math:`f(\textbf{x}) = \sum_{i = 1}^D \left( \sum_{j = 1}^D (j - \beta) \left( x_j^i - \frac{1}{j^i} \right) \right)^2` |
|
25
|
|
|
|
|
26
|
|
|
**Input domain:** |
|
27
|
|
|
The function can be defined on any input domain but it is usually |
|
28
|
|
|
evaluated on the hypercube :math:`x_i ∈ [-D, D]`, for all :math:`i = 1, 2,..., D`. |
|
29
|
|
|
|
|
30
|
|
|
**Global minimum:** |
|
31
|
|
|
:math:`f(\textbf{x}^*) = 0` at :math:`\textbf{x}^* = (1, \frac{1}{2}, \cdots , \frac{1}{i} , \cdots , \frac{1}{D})` |
|
32
|
|
|
|
|
33
|
|
|
LaTeX formats: |
|
34
|
|
|
Inline: |
|
35
|
|
|
$f(\textbf{x}) = \sum_{i = 1}^D \left( \sum_{j = 1}^D (j - \beta) \left( x_j^i - \frac{1}{j^i} \right) \right)^2$ |
|
36
|
|
|
|
|
37
|
|
|
Equation: |
|
38
|
|
|
\begin{equation} f(\textbf{x}) = \sum_{i = 1}^D \left( \sum_{j = 1}^D (j - \beta) \left( x_j^i - \frac{1}{j^i} \right) \right)^2 \end{equation} |
|
39
|
|
|
|
|
40
|
|
|
Domain: |
|
41
|
|
|
$-D \leq x_i \leq D$ |
|
42
|
|
|
|
|
43
|
|
|
Reference: |
|
44
|
|
|
https://www.sfu.ca/~ssurjano/perm0db.html |
|
45
|
|
|
""" |
|
46
|
|
|
Name = ['Perm'] |
|
47
|
|
|
|
|
48
|
|
|
def __init__(self, D=10.0, beta=.5): |
|
49
|
|
|
r"""Initialize of Bent Cigar benchmark. |
|
50
|
|
|
|
|
51
|
|
|
Args: |
|
52
|
|
|
Lower (Optional[float]): Lower bound of problem. |
|
53
|
|
|
Upper (Optional[float]): Upper bound of problem. |
|
54
|
|
|
|
|
55
|
|
|
See Also: |
|
56
|
|
|
:func:`NiaPy.benchmarks.Benchmark.__init__` |
|
57
|
|
|
""" |
|
58
|
|
|
Benchmark.__init__(self, -D, D) |
|
59
|
|
|
Perm.beta = beta |
|
60
|
|
|
|
|
61
|
|
|
@staticmethod |
|
62
|
|
|
def latex_code(): |
|
63
|
|
|
r"""Return the latex code of the problem. |
|
64
|
|
|
|
|
65
|
|
|
Returns: |
|
66
|
|
|
str: Latex code |
|
67
|
|
|
""" |
|
68
|
|
|
return r'''$f(\textbf{x}) = \sum_{i = 1}^D \left( \sum_{j = 1}^D (j - \beta) \left( x_j^i - \frac{1}{j^i} \right) \right)^2$''' |
|
69
|
|
|
|
|
70
|
|
|
def function(self): |
|
71
|
|
|
r"""Return benchmark evaluation function. |
|
72
|
|
|
|
|
73
|
|
|
Returns: |
|
74
|
|
|
Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function |
|
75
|
|
|
""" |
|
76
|
|
|
beta = self.beta |
|
77
|
|
|
def f(D, X): |
|
78
|
|
|
r"""Fitness function. |
|
79
|
|
|
|
|
80
|
|
|
Args: |
|
81
|
|
|
D (int): Dimensionality of the problem |
|
82
|
|
|
sol (Union[int, float, List[int, float], numpy.ndarray]): Solution to check. |
|
83
|
|
|
|
|
84
|
|
|
Returns: |
|
85
|
|
|
float: Fitness value for the solution. |
|
86
|
|
|
""" |
|
87
|
|
|
v = .0 |
|
88
|
|
|
for i in range(1, D + 1): |
|
89
|
|
|
vv = .0 |
|
90
|
|
|
for j in range(1, D + 1): vv += (j + beta) * (X[j - 1] ** i - 1 / j ** i) |
|
91
|
|
|
v += vv ** 2 |
|
92
|
|
|
return v |
|
93
|
|
|
return f |
|
94
|
|
|
|
|
95
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
|
96
|
|
|
|