1
|
|
|
# encoding=utf8 |
2
|
|
|
|
3
|
|
|
"""Implementation of Ackley benchmark.""" |
4
|
|
|
|
5
|
|
|
from numpy import exp, pi, cos, sqrt |
6
|
|
|
|
7
|
|
|
from NiaPy.benchmarks.benchmark import Benchmark |
8
|
|
|
|
9
|
|
|
__all__ = ['Ackley'] |
10
|
|
|
|
11
|
|
|
class Ackley(Benchmark): |
12
|
|
|
r"""Implementation of Ackley function. |
13
|
|
|
|
14
|
|
|
Date: 2018 |
15
|
|
|
|
16
|
|
|
Author: Lucija Brezočnik |
17
|
|
|
|
18
|
|
|
License: MIT |
19
|
|
|
|
20
|
|
|
Function: **Ackley function** |
21
|
|
|
|
22
|
|
|
:math:`f(\mathbf{x}) = -a\;\exp\left(-b \sqrt{\frac{1}{D}\sum_{i=1}^D x_i^2}\right) |
23
|
|
|
- \exp\left(\frac{1}{D}\sum_{i=1}^D \cos(c\;x_i)\right) + a + \exp(1)` |
24
|
|
|
|
25
|
|
|
**Input domain:** |
26
|
|
|
The function can be defined on any input domain but it is usually |
27
|
|
|
evaluated on the hypercube :math:`x_i ∈ [-32.768, 32.768]`, for all :math:`i = 1, 2,..., D`. |
28
|
|
|
|
29
|
|
|
**Global minimum:** :math:`f(\textbf{x}^*) = 0`, at :math:`x^* = (0,...,0)` |
30
|
|
|
|
31
|
|
|
LaTeX formats: |
32
|
|
|
Inline: |
33
|
|
|
$f(\mathbf{x}) = -a\;\exp\left(-b \sqrt{\frac{1}{D} |
34
|
|
|
\sum_{i=1}^D x_i^2}\right) - \exp\left(\frac{1}{D} |
35
|
|
|
\sum_{i=1}^D cos(c\;x_i)\right) + a + \exp(1)$ |
36
|
|
|
|
37
|
|
|
Equation: |
38
|
|
|
\begin{equation}f(\mathbf{x}) = |
39
|
|
|
-a\;\exp\left(-b \sqrt{\frac{1}{D} \sum_{i=1}^D x_i^2}\right) - |
40
|
|
|
\exp\left(\frac{1}{D} \sum_{i=1}^D \cos(c\;x_i)\right) + |
41
|
|
|
a + \exp(1) \end{equation} |
42
|
|
|
|
43
|
|
|
Domain: |
44
|
|
|
$-32.768 \leq x_i \leq 32.768$ |
45
|
|
|
|
46
|
|
|
Reference: |
47
|
|
|
https://www.sfu.ca/~ssurjano/ackley.html |
48
|
|
|
""" |
49
|
|
|
Name = ['Ackley'] |
50
|
|
|
|
51
|
|
|
def __init__(self, Lower=-32.768, Upper=32.768): |
52
|
|
|
r"""Initialize of Ackley benchmark. |
53
|
|
|
|
54
|
|
|
Args: |
55
|
|
|
Lower (Optional[float]): Lower bound of problem. |
56
|
|
|
Upper (Optional[float]): Upper bound of problem. |
57
|
|
|
|
58
|
|
|
See Also: |
59
|
|
|
:func:`NiaPy.benchmarks.Benchmark.__init__` |
60
|
|
|
""" |
61
|
|
|
Benchmark.__init__(self, Lower, Upper) |
62
|
|
|
|
63
|
|
|
@staticmethod |
64
|
|
|
def latex_code(): |
65
|
|
|
r"""Return the latex code of the problem. |
66
|
|
|
|
67
|
|
|
Returns: |
68
|
|
|
str: Latex code |
69
|
|
|
""" |
70
|
|
|
return r'''$f(\mathbf{x}) = -a\;\exp\left(-b \sqrt{\frac{1}{D} |
71
|
|
|
\sum_{i=1}^D x_i^2}\right) - \exp\left(\frac{1}{D} |
72
|
|
|
\sum_{i=1}^D \cos(c\;x_i)\right) + a + \exp(1)$''' |
73
|
|
|
|
74
|
|
|
def function(slef): |
75
|
|
|
r"""Return benchmark evaluation function. |
76
|
|
|
|
77
|
|
|
Returns: |
78
|
|
|
Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function |
79
|
|
|
""" |
80
|
|
|
def evaluate(D, sol): |
81
|
|
|
r"""Fitness function. |
82
|
|
|
|
83
|
|
|
Args: |
84
|
|
|
D (int): Dimensionality of the problem |
85
|
|
|
sol (Union[int, float, List[int, float], numpy.ndarray]): Solution to check. |
86
|
|
|
|
87
|
|
|
Returns: |
88
|
|
|
float: Fitness value for the solution. |
89
|
|
|
""" |
90
|
|
|
a = 20 # Recommended variable value |
91
|
|
|
b = 0.2 # Recommended variable value |
92
|
|
|
c = 2 * pi # Recommended variable value |
93
|
|
|
|
94
|
|
|
val = 0.0 |
95
|
|
|
val1 = 0.0 |
96
|
|
|
val2 = 0.0 |
97
|
|
|
|
98
|
|
|
for i in range(D): |
99
|
|
|
val1 += sol[i] ** 2 |
100
|
|
|
val2 += cos(c * sol[i]) |
101
|
|
|
|
102
|
|
|
temp1 = -b * sqrt(val1 / D) |
103
|
|
|
temp2 = val2 / D |
104
|
|
|
|
105
|
|
|
val = -a * exp(temp1) - exp(temp2) + a + exp(1) |
106
|
|
|
|
107
|
|
|
return val |
108
|
|
|
|
109
|
|
|
return evaluate |
110
|
|
|
|