NiaPy.algorithms.modified.saba   A
last analyzed

Complexity

Total Complexity 39

Size/Duplication

Total Lines 360
Duplicated Lines 12.22 %

Importance

Changes 0
Metric Value
eloc 105
dl 44
loc 360
rs 9.28
c 0
b 0
f 0
wmc 39

15 Methods

Rating   Name   Duplication   Size   Complexity  
B AdaptiveBatAlgorithm.runIteration() 0 33 6
A AdaptiveBatAlgorithm.getParameters() 0 19 1
A AdaptiveBatAlgorithm.updateLoudness() 0 11 2
A AdaptiveBatAlgorithm.localSearch() 0 13 1
A AdaptiveBatAlgorithm.algorithmInfo() 0 11 1
B SelfAdaptiveBatAlgorithm.runIteration() 0 37 6
A SelfAdaptiveBatAlgorithm.algorithmInfo() 0 11 1
A AdaptiveBatAlgorithm.setParameters() 0 16 1
A SelfAdaptiveBatAlgorithm.setParameters() 0 16 1
A SelfAdaptiveBatAlgorithm.selfAdaptation() 0 13 3
A SelfAdaptiveBatAlgorithm.getParameters() 0 19 1
B AdaptiveBatAlgorithm.typeParameters() 0 24 6
B SelfAdaptiveBatAlgorithm.typeParameters() 21 21 7
A AdaptiveBatAlgorithm.initPopulation() 23 23 1
A SelfAdaptiveBatAlgorithm.initPopulation() 0 5 1

How to fix   Duplicated Code   

Duplicated Code

Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.

Common duplication problems, and corresponding solutions are:

1
# encoding=utf8
2
import logging
3
4
import numpy as np
5
6
from NiaPy.algorithms.algorithm import Algorithm
7
8
logging.basicConfig()
9
logger = logging.getLogger('NiaPy.algorithms.modified')
10
logger.setLevel('INFO')
11
12
__all__ = ['AdaptiveBatAlgorithm', 'SelfAdaptiveBatAlgorithm']
13
14
class AdaptiveBatAlgorithm(Algorithm):
15
	r"""Implementation of Adaptive bat algorithm.
16
17
	Algorithm:
18
		Adaptive bat algorithm
19
20
	Date:
21
		April 2019
22
23
	Authors:
24
		Klemen Berkovič
25
26
	License:
27
		MIT
28
29
	Attributes:
30
		Name (List[str]): List of strings representing algorithm name.
31
		epsilon (float): Scaling factor.
32
		alpha (float): Constant for updating loudness.
33
		r (float): Pulse rate.
34
		Qmin (float): Minimum frequency.
35
		Qmax (float): Maximum frequency.
36
37
	See Also:
38
		* :class:`NiaPy.algorithms.Algorithm`
39
	"""
40
	Name = ['AdaptiveBatAlgorithm', 'ABA']
41
42
	@staticmethod
43
	def algorithmInfo():
44
		r"""Get basic information about the algorithm.
45
46
		Returns:
47
			str: Basic information.
48
49
		See Also:
50
			* :func:`NiaPy.algorithms.Algorithm.algorithmInfo`
51
		"""
52
		return r"""TODO"""
53
54
	@staticmethod
55
	def typeParameters():
56
		r"""Return dict with where key of dict represents parameter name and values represent checking functions for selected parameter.
57
58
		Returns:
59
			Dict[str, Callable]:
60
				* epsilon (Callable[[Union[float, int]], bool]): Scale factor.
61
				* alpha (Callable[[Union[float, int]], bool]): Constant for updating loudness.
62
				* r (Callable[[Union[float, int]], bool]): Pulse rate.
63
				* Qmin (Callable[[Union[float, int]], bool]): Minimum frequency.
64
				* Qmax (Callable[[Union[float, int]], bool]): Maximum frequency.
65
66
		See Also:
67
			* :func:`NiaPy.algorithms.Algorithm.typeParameters`
68
		"""
69
		d = Algorithm.typeParameters()
70
		d.update({
71
			'epsilon': lambda x: isinstance(x, (float, int)) and x > 0,
72
			'alpha': lambda x: isinstance(x, (float, int)) and x > 0,
73
			'r': lambda x: isinstance(x, (float, int)) and x > 0,
74
			'Qmin': lambda x: isinstance(x, (float, int)),
75
			'Qmax': lambda x: isinstance(x, (float, int))
76
		})
77
		return d
78
79
	def setParameters(self, NP=100, A=0.5, epsilon=0.001, alpha=1.0, r=0.5, Qmin=0.0, Qmax=2.0, **ukwargs):
80
		r"""Set the parameters of the algorithm.
81
82
		Args:
83
			A (Optional[float]): Starting loudness.
84
			epsilon (Optional[float]): Scaling factor.
85
			alpha (Optional[float]): Constant for updating loudness.
86
			r (Optional[float]): Pulse rate.
87
			Qmin (Optional[float]): Minimum frequency.
88
			Qmax (Optional[float]): Maximum frequency.
89
90
		See Also:
91
			* :func:`NiaPy.algorithms.Algorithm.setParameters`
92
		"""
93
		Algorithm.setParameters(self, NP=NP, **ukwargs)
94
		self.A, self.epsilon, self.alpha, self.r, self.Qmin, self.Qmax = A, epsilon, alpha, r, Qmin, Qmax
95
96
	def getParameters(self):
97
		r"""Get algorithm parameters.
98
99
		Returns:
100
			Dict[str, Any]: Arguments values.
101
102
		See Also:
103
			* :func:`NiaPy.algorithms.algorithm.Algorithm.getParameters`
104
		"""
105
		d = Algorithm.getParameters(self)
106
		d.update({
107
			'A': self.A,
108
			'epsilon': self.epsilon,
109
			'alpha': self.alpha,
110
			'r': self.r,
111
			'Qmin': self.Qmin,
112
			'Qmax': self.Qmax
113
		})
114
		return d
115
116 View Code Duplication
	def initPopulation(self, task):
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
117
		r"""Initialize the starting population.
118
119
		Parameters:
120
			task (Task): Optimization task
121
122
		Returns:
123
			Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]:
124
				1. New population.
125
				2. New population fitness/function values.
126
				3. Additional arguments:
127
					* A (float): Loudness.
128
					* S (numpy.ndarray): TODO
129
					* Q (numpy.ndarray[float]): 	TODO
130
					* v (numpy.ndarray[float]): TODO
131
132
		See Also:
133
			* :func:`NiaPy.algorithms.Algorithm.initPopulation`
134
		"""
135
		Sol, Fitness, d = Algorithm.initPopulation(self, task)
136
		A, S, Q, v = np.full(self.NP, self.A), np.full([self.NP, task.D], 0.0), np.full(self.NP, 0.0), np.full([self.NP, task.D], 0.0)
137
		d.update({'A': A, 'S': S, 'Q': Q, 'v': v})
138
		return Sol, Fitness, d
139
140
	def localSearch(self, best, A, task, **kwargs):
141
		r"""Improve the best solution according to the Yang (2010).
142
143
		Args:
144
			best (numpy.ndarray): Global best individual.
145
			A (float): Loudness.
146
			task (Task): Optimization task.
147
			**kwargs (Dict[str, Any]): Additional arguments.
148
149
		Returns:
150
			numpy.ndarray: New solution based on global best individual.
151
		"""
152
		return task.repair(best + self.epsilon * A * self.normal(0, 1, task.D), rnd=self.Rand)
153
154
	def updateLoudness(self, A):
155
		r"""Update loudness when the prey is found.
156
157
		Args:
158
			A (float): Loudness.
159
160
		Returns:
161
			float: New loudness.
162
		"""
163
		nA = A * self.alpha
164
		return nA if nA > 1e-13 else self.A
165
166
	def runIteration(self, task, Sol, Fitness, xb, fxb, A, S, Q, v, **dparams):
167
		r"""Core function of Bat Algorithm.
168
169
		Parameters:
170
			task (Task): Optimization task.
171
			Sol (numpy.ndarray): Current population
172
			Fitness (numpy.ndarray[float]): Current population fitness/funciton values
173
			best (numpy.ndarray): Current best individual
174
			f_min (float): Current best individual function/fitness value
175
			S (numpy.ndarray): TODO
176
			Q (numpy.ndarray[float]): TODO
177
			v (numpy.ndarray[float]): TODO
178
			dparams (Dict[str, Any]): Additional algorithm arguments
179
180
		Returns:
181
			Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]:
182
				1. New population
183
				2. New population fitness/function vlues
184
				3. Additional arguments:
185
					* A (numpy.ndarray[float]): Loudness.
186
					* S (numpy.ndarray): TODO
187
					* Q (numpy.ndarray[float]): TODO
188
					* v (numpy.ndarray[float]): TODO
189
		"""
190
		for i in range(self.NP):
191
			Q[i] = self.Qmin + (self.Qmax - self.Qmin) * self.uniform(0, 1)
192
			v[i] += (Sol[i] - xb) * Q[i]
193
			if self.rand() > self.r: S[i] = self.localSearch(best=xb, A=A[i], task=task, i=i, Sol=Sol)
194
			else: S[i] = task.repair(Sol[i] + v[i], rnd=self.Rand)
195
			Fnew = task.eval(S[i])
196
			if (Fnew <= Fitness[i]) and (self.rand() < A[i]): Sol[i], Fitness[i] = S[i], Fnew
197
			if Fnew <= fxb: xb, fxb, A[i] = S[i].copy(), Fnew, self.updateLoudness(A[i])
198
		return Sol, Fitness, xb, fxb, {'A': A, 'S': S, 'Q': Q, 'v': v}
199
200
class SelfAdaptiveBatAlgorithm(AdaptiveBatAlgorithm):
201
	r"""Implementation of Hybrid bat algorithm.
202
203
	Algorithm:
204
		Hybrid bat algorithm
205
206
	Date:
207
		April 2019
208
209
	Author:
210
		Klemen Berkovič
211
212
	License:
213
		MIT
214
215
	Reference paper:
216
		Fister Jr., Iztok and Fister, Dusan and Yang, Xin-She. "A Hybrid Bat Algorithm". Elektrotehniski vestnik, 2013. 1-7.
217
218
	Attributes:
219
		Name (List[str]): List of strings representing algorithm name.
220
		A_l (Optional[float]): Lower limit of loudness.
221
		A_u (Optional[float]): Upper limit of loudness.
222
		r_l (Optional[float]): Lower limit of pulse rate.
223
		r_u (Optional[float]): Upper limit of pulse rate.
224
		tao_1 (Optional[float]): Learning rate for loudness.
225
		tao_2 (Optional[float]): Learning rate for pulse rate.
226
227
	See Also:
228
		* :class:`NiaPy.algorithms.basic.BatAlgorithm`
229
	"""
230
	Name = ['SelfAdaptiveBatAlgorithm', 'SABA']
231
232
	@staticmethod
233
	def algorithmInfo():
234
		r"""Get basic information about the algorithm.
235
236
		Returns:
237
			str: Basic information.
238
239
		See Also:
240
			* :func:`NiaPy.algorithms.Algorithm.algorithmInfo`
241
		"""
242
		return r"""Fister Jr., Iztok and Fister, Dusan and Yang, Xin-She. "A Hybrid Bat Algorithm". Elektrotehniski vestnik, 2013. 1-7."""
243
244 View Code Duplication
	@staticmethod
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
245
	def typeParameters():
246
		r"""Get dictionary with functions for checking values of parameters.
247
248
		Returns:
249
			Dict[str, Callable]: TODO
250
251
		See Also:
252
			* :func:`NiaPy.algorithms.basic.BatAlgorithm.typeParameters`
253
		"""
254
		d = AdaptiveBatAlgorithm.typeParameters()
255
		d.pop('A', None), d.pop('r', None)
256
		d.update({
257
			'A_l': lambda x: isinstance(x, (float, int)) and x >= 0,
258
			'A_u': lambda x: isinstance(x, (float, int)) and x >= 0,
259
			'r_l': lambda x: isinstance(x, (float, int)) and x >= 0,
260
			'r_u': lambda x: isinstance(x, (float, int)) and x >= 0,
261
			'tao_1': lambda x: isinstance(x, (float, int)) and 0 <= x <= 1,
262
			'tao_2': lambda x: isinstance(x, (float, int)) and 0 <= x <= 1
263
		})
264
		return d
265
266
	def setParameters(self, A_l=0.9, A_u=1.0, r_l=0.001, r_u=0.1, tao_1=0.1, tao_2=0.1, **ukwargs):
267
		r"""Set core parameters of HybridBatAlgorithm algorithm.
268
269
		Arguments:
270
			A_l (Optional[float]): Lower limit of loudness.
271
			A_u (Optional[float]): Upper limit of loudness.
272
			r_l (Optional[float]): Lower limit of pulse rate.
273
			r_u (Optional[float]): Upper limit of pulse rate.
274
			tao_1 (Optional[float]): Learning rate for loudness.
275
			tao_2 (Optional[float]): Learning rate for pulse rate.
276
277
		See Also:
278
			* :func:`NiaPy.algorithms.modified.AdaptiveBatAlgorithm.setParameters`
279
		"""
280
		AdaptiveBatAlgorithm.setParameters(self, **ukwargs)
281
		self.A_l, self.A_u, self.r_l, self.r_u, self.tao_1, self.tao_2 = A_l, A_u, r_l, r_u, tao_1, tao_2
282
283
	def getParameters(self):
284
		r"""Get parameters of the algorithm.
285
286
		Returns:
287
			Dict[str, Any]: Parameters of the algorithm.
288
289
		See Also:
290
			* :func:`NiaPy.algorithms.modified.AdaptiveBatAlgorithm.getParameters`
291
		"""
292
		d = AdaptiveBatAlgorithm.getParameters(self)
293
		d.update({
294
			'A_l': self.A_l,
295
			'A_u': self.A_u,
296
			'r_l': self.r_l,
297
			'r_u': self.r_u,
298
			'tao_1': self.tao_1,
299
			'tao_2': self.tao_2
300
		})
301
		return d
302
303
	def initPopulation(self, task):
304
		Sol, Fitness, d = AdaptiveBatAlgorithm.initPopulation(self, task)
305
		A, r = np.full(self.NP, self.A), np.full(self.NP, self.r)
306
		d.update({'A': A, 'r': r})
307
		return Sol, Fitness, d
308
309
	def selfAdaptation(self, A, r):
310
		r"""Adaptation step.
311
312
		Args:
313
			A (float): Current loudness.
314
			r (float): Current pulse rate.
315
316
		Returns:
317
			Tuple[float, float]:
318
				1. New loudness.
319
				2. Nwq pulse rate.
320
		"""
321
		return self.A_l + self.rand() * (self.A_u - self.A_l) if self.rand() < self.tao_1 else A, self.r_l + self.rand() * (self.r_u - self.r_l) if self.rand() < self.tao_2 else r
322
323
	def runIteration(self, task, Sol, Fitness, xb, fxb, A, r, S, Q, v, **dparams):
324
		r"""Core function of Bat Algorithm.
325
326
		Parameters:
327
			task (Task): Optimization task.
328
			Sol (numpy.ndarray): Current population
329
			Fitness (numpy.ndarray[float]): Current population fitness/funciton values
330
			xb (numpy.ndarray): Current best individual
331
			fxb (float): Current best individual function/fitness value
332
			A (numpy.ndarray[flaot]): Loudness of individuals.
333
			r (numpy.ndarray[float[): Pulse rate of individuals.
334
			S (numpy.ndarray): TODO
335
			Q (numpy.ndarray[float]): TODO
336
			v (numpy.ndarray[float]): TODO
337
			dparams (Dict[str, Any]): Additional algorithm arguments
338
339
		Returns:
340
			Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]:
341
				1. New population
342
				2. New population fitness/function vlues
343
				3. Additional arguments:
344
					* A (numpy.ndarray[float]): Loudness.
345
					* r (numpy.ndarray[float]): Pulse rate.
346
					* S (numpy.ndarray): TODO
347
					* Q (numpy.ndarray[float]): TODO
348
					* v (numpy.ndarray[float]): TODO
349
		"""
350
		for i in range(self.NP):
351
			A[i], r[i] = self.selfAdaptation(A[i], r[i])
352
			Q[i] = self.Qmin + (self.Qmax - self.Qmin) * self.uniform(0, 1)
353
			v[i] += (Sol[i] - xb) * Q[i]
354
			if self.rand() > r[i]: S[i] = self.localSearch(best=xb, A=A[i], task=task, i=i, Sol=Sol)
355
			else: S[i] = task.repair(Sol[i] + v[i], rnd=self.Rand)
356
			Fnew = task.eval(S[i])
357
			if (Fnew <= Fitness[i]) and (self.rand() < (self.A_l - A[i]) / self.A): Sol[i], Fitness[i] = S[i], Fnew
358
			if Fnew <= fxb: xb, fxb = S[i].copy(), Fnew
359
		return Sol, Fitness, xb, fxb, {'A': A, 'r': r, 'S': S, 'Q': Q, 'v': v}
360
361
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
362