1
|
|
|
# encoding=utf8 |
2
|
|
|
import logging |
3
|
|
|
|
4
|
|
|
from numpy import random as rand, sin, pi, argmin, abs, mean |
5
|
|
|
from scipy.special import gamma |
6
|
|
|
|
7
|
|
|
from NiaPy.algorithms.algorithm import Algorithm |
8
|
|
|
|
9
|
|
|
logging.basicConfig() |
10
|
|
|
logger = logging.getLogger('NiaPy.algorithms.basic') |
11
|
|
|
logger.setLevel('INFO') |
12
|
|
|
|
13
|
|
|
__all__ = ['HarrisHawksOptimization'] |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
class HarrisHawksOptimization(Algorithm): |
17
|
|
|
r"""Implementation of Harris Hawks Optimization algorithm. |
18
|
|
|
|
19
|
|
|
Algorithm: |
20
|
|
|
Harris Hawks Optimization |
21
|
|
|
|
22
|
|
|
Date: |
23
|
|
|
2020 |
24
|
|
|
|
25
|
|
|
Authors: |
26
|
|
|
Francisco Jose Solis-Munoz |
27
|
|
|
|
28
|
|
|
License: |
29
|
|
|
MIT |
30
|
|
|
|
31
|
|
|
Reference paper: |
32
|
|
|
Heidari et al. "Harris hawks optimization: Algorithm and applications". Future Generation Computer Systems. 2019. Vol. 97. 849-872. |
33
|
|
|
|
34
|
|
|
Attributes: |
35
|
|
|
Name (List[str]): List of strings representing algorithm name. |
36
|
|
|
levy (float): Levy factor. |
37
|
|
|
|
38
|
|
|
See Also: |
39
|
|
|
* :class:`NiaPy.algorithms.Algorithm` |
40
|
|
|
""" |
41
|
|
|
Name = ['HarrisHawksOptimization', 'HHO'] |
42
|
|
|
|
43
|
|
|
def __init__(self, **kwargs): |
44
|
|
|
super(HarrisHawksOptimization, self).__init__(**kwargs) |
45
|
|
|
|
46
|
|
|
@staticmethod |
47
|
|
|
def algorithmInfo(): |
48
|
|
|
r"""Get algorithms information. |
49
|
|
|
|
50
|
|
|
Returns: |
51
|
|
|
str: Algorithm information. |
52
|
|
|
|
53
|
|
|
See Also: |
54
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
55
|
|
|
""" |
56
|
|
|
return r"""Heidari et al. "Harris hawks optimization: Algorithm and applications". Future Generation Computer Systems. 2019. Vol. 97. 849-872.""" |
57
|
|
|
|
58
|
|
|
@staticmethod |
59
|
|
|
def typeParameters(): |
60
|
|
|
r"""Return dict with where key of dict represents parameter name and values represent checking functions for selected parameter. |
61
|
|
|
|
62
|
|
|
Returns: |
63
|
|
|
Dict[str, Callable]: |
64
|
|
|
* levy (Callable[[Union[float, int]], bool]): Levy factor. |
65
|
|
|
|
66
|
|
|
See Also: |
67
|
|
|
* :func:`NiaPy.algorithms.Algorithm.typeParameters` |
68
|
|
|
""" |
69
|
|
|
d = Algorithm.typeParameters() |
70
|
|
|
d.update({ |
71
|
|
|
'levy': lambda x: isinstance(x, (float, int)) and x > 0, |
72
|
|
|
}) |
73
|
|
|
return d |
74
|
|
|
|
75
|
|
|
def setParameters(self, NP=40, levy=0.01, **ukwargs): |
76
|
|
|
r"""Set the parameters of the algorithm. |
77
|
|
|
|
78
|
|
|
Args: |
79
|
|
|
levy (Optional[float]): Levy factor. |
80
|
|
|
|
81
|
|
|
See Also: |
82
|
|
|
* :func:`NiaPy.algorithms.Algorithm.setParameters` |
83
|
|
|
""" |
84
|
|
|
Algorithm.setParameters(self, NP=NP, **ukwargs) |
85
|
|
|
self.levy = levy |
86
|
|
|
|
87
|
|
|
def getParameters(self): |
88
|
|
|
r"""Get parameters of the algorithm. |
89
|
|
|
|
90
|
|
|
Returns: |
91
|
|
|
Dict[str, Any] |
92
|
|
|
""" |
93
|
|
|
d = Algorithm.getParameters(self) |
94
|
|
|
d.update({ |
95
|
|
|
'levy': self.levy |
96
|
|
|
}) |
97
|
|
|
return d |
98
|
|
|
|
99
|
|
|
def initPopulation(self, task, rnd=rand): |
100
|
|
|
r"""Initialize the starting population. |
101
|
|
|
|
102
|
|
|
Parameters: |
103
|
|
|
task (Task): Optimization task |
104
|
|
|
|
105
|
|
|
Returns: |
106
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
107
|
|
|
1. New population. |
108
|
|
|
2. New population fitness/function values. |
109
|
|
|
|
110
|
|
|
See Also: |
111
|
|
|
* :func:`NiaPy.algorithms.Algorithm.initPopulation` |
112
|
|
|
""" |
113
|
|
|
Sol, Fitness, d = Algorithm.initPopulation(self, task) |
114
|
|
|
return Sol, Fitness, d |
115
|
|
|
|
116
|
|
|
def levy_function(self, dims, step=0.01, rnd=rand): |
117
|
|
|
r"""Calculate levy function. |
118
|
|
|
|
119
|
|
|
Parameters: |
120
|
|
|
dim (int): Number of dimensions |
121
|
|
|
step (float): Step of the Levy function |
122
|
|
|
|
123
|
|
|
Returns: |
124
|
|
|
float: The Levy function evaluation |
125
|
|
|
""" |
126
|
|
|
beta = 1.5 |
127
|
|
|
sigma = (gamma(1 + beta) * sin(pi * beta / 2) / (gamma((1 + beta / 2) * beta * 2.0 ** ((beta - 1) / 2)))) ** (1 / beta) |
128
|
|
|
normal_1 = rnd.normal(0, sigma, size=dims) |
129
|
|
|
normal_2 = rnd.normal(0, 1, size=dims) |
130
|
|
|
result = step * normal_1 / (abs(normal_2) ** (1 / beta)) |
131
|
|
|
return result |
132
|
|
|
|
133
|
|
|
def runIteration(self, task, Sol, Fitness, xb, fxb, **dparams): |
134
|
|
|
r"""Core function of Harris Hawks Optimization. |
135
|
|
|
|
136
|
|
|
Parameters: |
137
|
|
|
task (Task): Optimization task. |
138
|
|
|
Sol (numpy.ndarray): Current population |
139
|
|
|
Fitness (numpy.ndarray[float]): Current population fitness/funciton values |
140
|
|
|
xb (numpy.ndarray): Current best individual |
141
|
|
|
fxb (float): Current best individual function/fitness value |
142
|
|
|
dparams (Dict[str, Any]): Additional algorithm arguments |
143
|
|
|
|
144
|
|
|
Returns: |
145
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, Dict[str, Any]]: |
146
|
|
|
1. New population |
147
|
|
|
2. New population fitness/function vlues |
148
|
|
|
3. New global best solution |
149
|
|
|
4. New global best fitness/objective value |
150
|
|
|
""" |
151
|
|
|
# Decreasing energy factor |
152
|
|
|
decreasing_energy_factor = 2 * (1 - task.iters() / task.nGEN) |
153
|
|
|
mean_sol = mean(Sol) |
154
|
|
|
# Update population |
155
|
|
|
for i in range(self.NP): |
156
|
|
|
jumping_energy = self.Rand.uniform(0, 2) |
157
|
|
|
decreasing_energy_random = self.Rand.uniform(-1, 1) |
158
|
|
|
escaping_energy = decreasing_energy_factor * decreasing_energy_random |
159
|
|
|
escaping_energy_abs = abs(escaping_energy) |
160
|
|
|
random_number = self.Rand.rand() |
161
|
|
|
if escaping_energy >= 1 and random_number >= 0.5: |
162
|
|
|
# 0. Exploration: Random tall tree |
163
|
|
|
rhi = self.Rand.randint(0, self.NP) |
164
|
|
|
random_agent = Sol[rhi] |
165
|
|
|
Sol[i] = random_agent - self.Rand.rand() * abs(random_agent - 2 * self.Rand.rand() * Sol[i]) |
166
|
|
|
elif escaping_energy_abs >= 1 and random_number < 0.5: |
167
|
|
|
# 1. Exploration: Family members mean |
168
|
|
|
Sol[i] = (xb - mean_sol) - self.Rand.rand() * self.Rand.uniform(task.Lower, task.Upper) |
169
|
|
|
elif escaping_energy_abs >= 0.5 and random_number >= 0.5: |
170
|
|
|
# 2. Exploitation: Soft besiege |
171
|
|
|
Sol[i] = \ |
172
|
|
|
(xb - Sol[i]) - \ |
173
|
|
|
escaping_energy * \ |
174
|
|
|
abs(jumping_energy * xb - Sol[i]) |
175
|
|
|
elif escaping_energy_abs < 0.5 and random_number >= 0.5: |
176
|
|
|
# 3. Exploitation: Hard besiege |
177
|
|
|
Sol[i] = \ |
178
|
|
|
xb - \ |
179
|
|
|
escaping_energy * \ |
180
|
|
|
abs(xb - Sol[i]) |
181
|
|
|
elif escaping_energy_abs >= 0.5 and random_number < 0.5: |
182
|
|
|
# 4. Exploitation: Soft besiege with pprogressive rapid dives |
183
|
|
|
cand1 = task.repair(xb - escaping_energy * abs(jumping_energy * xb - Sol[i]), rnd=self.Rand) |
184
|
|
|
random_vector = self.Rand.rand(task.D) |
185
|
|
|
cand2 = task.repair(cand1 + random_vector * self.levy_function(task.D, self.levy, rnd=self.Rand), rnd=self.Rand) |
186
|
|
|
if task.eval(cand1) < Fitness[i]: |
187
|
|
|
Sol[i] = cand1 |
188
|
|
|
elif task.eval(cand2) < Fitness[i]: |
189
|
|
|
Sol[i] = cand2 |
190
|
|
|
elif escaping_energy_abs < 0.5 and random_number < 0.5: |
191
|
|
|
# 5. Exploitation: Hard besiege with progressive rapid dives |
192
|
|
|
cand1 = task.repair(xb - escaping_energy * abs(jumping_energy * xb - mean_sol), rnd=self.Rand) |
193
|
|
|
random_vector = self.Rand.rand(task.D) |
194
|
|
|
cand2 = task.repair(cand1 + random_vector * self.levy_function(task.D, self.levy, rnd=self.Rand), rnd=self.Rand) |
195
|
|
|
if task.eval(cand1) < Fitness[i]: |
196
|
|
|
Sol[i] = cand1 |
197
|
|
|
elif task.eval(cand2) < Fitness[i]: |
198
|
|
|
Sol[i] = cand2 |
199
|
|
|
# Repair agent (from population) values |
200
|
|
|
Sol[i] = task.repair(Sol[i], rnd=self.Rand) |
201
|
|
|
# Eval population |
202
|
|
|
Fitness[i] = task.eval(Sol[i]) |
203
|
|
|
# Get best of population |
204
|
|
|
best_index = argmin(Fitness) |
205
|
|
|
xb_cand = Sol[best_index].copy() |
206
|
|
|
fxb_cand = Fitness[best_index].copy() |
207
|
|
|
if fxb_cand < fxb: |
208
|
|
|
fxb = fxb_cand |
209
|
|
|
xb = xb_cand.copy() |
210
|
|
|
return Sol, Fitness, xb, fxb, {} |
211
|
|
|
|
212
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
213
|
|
|
|