1
|
|
|
# encoding=utf8 |
2
|
|
|
import logging |
3
|
|
|
|
4
|
|
|
from numpy import apply_along_axis, asarray, argmin, argmax, sum, full |
5
|
|
|
|
6
|
|
|
from NiaPy.algorithms.algorithm import Algorithm |
7
|
|
|
|
8
|
|
|
__all__ = ['GravitationalSearchAlgorithm'] |
9
|
|
|
|
10
|
|
|
logging.basicConfig() |
11
|
|
|
logger = logging.getLogger('NiaPy.algorithms.basic') |
12
|
|
|
logger.setLevel('INFO') |
13
|
|
|
|
14
|
|
|
class GravitationalSearchAlgorithm(Algorithm): |
15
|
|
|
r"""Implementation of Gravitational Search Algorithm. |
16
|
|
|
|
17
|
|
|
Algorithm: |
18
|
|
|
Gravitational Search Algorithm |
19
|
|
|
|
20
|
|
|
Date: |
21
|
|
|
2018 |
22
|
|
|
|
23
|
|
|
Author: |
24
|
|
|
Klemen Berkoivč |
25
|
|
|
|
26
|
|
|
License: |
27
|
|
|
MIT |
28
|
|
|
|
29
|
|
|
Reference URL: |
30
|
|
|
https://doi.org/10.1016/j.ins.2009.03.004 |
31
|
|
|
|
32
|
|
|
Reference paper: |
33
|
|
|
Esmat Rashedi, Hossein Nezamabadi-pour, Saeid Saryazdi, GSA: A Gravitational Search Algorithm, Information Sciences, Volume 179, Issue 13, 2009, Pages 2232-2248, ISSN 0020-0255 |
34
|
|
|
|
35
|
|
|
Attributes: |
36
|
|
|
Name (List[str]): List of strings representing algorithm name. |
37
|
|
|
|
38
|
|
|
See Also: |
39
|
|
|
* :class:`NiaPy.algorithms.algorithm.Algorithm` |
40
|
|
|
""" |
41
|
|
|
Name = ['GravitationalSearchAlgorithm', 'GSA'] |
42
|
|
|
|
43
|
|
|
@staticmethod |
44
|
|
|
def algorithmInfo(): |
45
|
|
|
r"""Get algorithm information. |
46
|
|
|
|
47
|
|
|
Returns: |
48
|
|
|
str: Algorithm information. |
49
|
|
|
""" |
50
|
|
|
return r"""Esmat Rashedi, Hossein Nezamabadi-pour, Saeid Saryazdi, GSA: A Gravitational Search Algorithm, Information Sciences, Volume 179, Issue 13, 2009, Pages 2232-2248, ISSN 0020-0255""" |
51
|
|
|
|
52
|
|
View Code Duplication |
@staticmethod |
|
|
|
|
53
|
|
|
def typeParameters(): |
54
|
|
|
r"""TODO. |
55
|
|
|
|
56
|
|
|
Returns: |
57
|
|
|
Dict[str, Callable]: |
58
|
|
|
* G_0 (Callable[[Union[int, float]], bool]): TODO |
59
|
|
|
* epsilon (Callable[[float], bool]): TODO |
60
|
|
|
|
61
|
|
|
See Also: |
62
|
|
|
* :func:`NiaPy.algorithms.algorithm.Algorithm.typeParameters` |
63
|
|
|
""" |
64
|
|
|
d = Algorithm.typeParameters() |
65
|
|
|
d.update({ |
66
|
|
|
'G_0': lambda x: isinstance(x, (int, float)) and x >= 0, |
67
|
|
|
'epsilon': lambda x: isinstance(x, float) and 0 < x < 1 |
68
|
|
|
}) |
69
|
|
|
return d |
70
|
|
|
|
71
|
|
|
def setParameters(self, NP=40, G_0=2.467, epsilon=1e-17, **ukwargs): |
72
|
|
|
r"""Set the algorithm parameters. |
73
|
|
|
|
74
|
|
|
Arguments: |
75
|
|
|
G_0 (float): Starting gravitational constant. |
76
|
|
|
epsilon (float): TODO. |
77
|
|
|
|
78
|
|
|
See Also: |
79
|
|
|
* :func:`NiaPy.algorithms.algorithm.Algorithm.setParameters` |
80
|
|
|
""" |
81
|
|
|
Algorithm.setParameters(self, NP=NP, **ukwargs) |
82
|
|
|
self.G_0, self.epsilon = G_0, epsilon |
83
|
|
|
|
84
|
|
|
def getParameters(self): |
85
|
|
|
r"""Get algorithm parameters values. |
86
|
|
|
|
87
|
|
|
Returns: |
88
|
|
|
Dict[str, Any]: TODO. |
89
|
|
|
|
90
|
|
|
See Also: |
91
|
|
|
* :func:`NiaPy.algorithms.algorithm.Algorithm.getParameters` |
92
|
|
|
""" |
93
|
|
|
d = Algorithm.getParameters(self) |
94
|
|
|
d.update({ |
95
|
|
|
'G_0': self.G_0, |
96
|
|
|
'epsilon': self.epsilon |
97
|
|
|
}) |
98
|
|
|
return d |
99
|
|
|
|
100
|
|
|
def G(self, t): |
101
|
|
|
r"""TODO. |
102
|
|
|
|
103
|
|
|
Args: |
104
|
|
|
t (int): TODO |
105
|
|
|
|
106
|
|
|
Returns: |
107
|
|
|
float: TODO |
108
|
|
|
""" |
109
|
|
|
return self.G_0 / t |
110
|
|
|
|
111
|
|
|
def d(self, x, y, ln=2): |
112
|
|
|
r"""TODO. |
113
|
|
|
|
114
|
|
|
Args: |
115
|
|
|
x: |
116
|
|
|
y: |
117
|
|
|
ln: |
118
|
|
|
|
119
|
|
|
Returns: |
120
|
|
|
TODO |
121
|
|
|
""" |
122
|
|
|
return sum((x - y) ** ln) ** (1 / ln) |
123
|
|
|
|
124
|
|
|
def initPopulation(self, task): |
125
|
|
|
r"""Initialize staring population. |
126
|
|
|
|
127
|
|
|
Args: |
128
|
|
|
task (Task): Optimization task. |
129
|
|
|
|
130
|
|
|
Returns: |
131
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
132
|
|
|
1. Initialized population. |
133
|
|
|
2. Initialized populations fitness/function values. |
134
|
|
|
3. Additional arguments: |
135
|
|
|
* v (numpy.ndarray[float]): TODO |
136
|
|
|
|
137
|
|
|
See Also: |
138
|
|
|
* :func:`NiaPy.algorithms.algorithm.Algorithm.initPopulation` |
139
|
|
|
""" |
140
|
|
|
X, X_f, _ = Algorithm.initPopulation(self, task) |
141
|
|
|
v = full([self.NP, task.D], 0.0) |
142
|
|
|
return X, X_f, {'v': v} |
143
|
|
|
|
144
|
|
|
def runIteration(self, task, X, X_f, xb, fxb, v, **dparams): |
145
|
|
|
r"""Core function of GravitationalSearchAlgorithm algorithm. |
146
|
|
|
|
147
|
|
|
Args: |
148
|
|
|
task (Task): Optimization task. |
149
|
|
|
X (numpy.ndarray): Current population. |
150
|
|
|
X_f (numpy.ndarray): Current populations fitness/function values. |
151
|
|
|
xb (numpy.ndarray): Global best solution. |
152
|
|
|
fxb (float): Global best fitness/function value. |
153
|
|
|
v (numpy.ndarray): TODO |
154
|
|
|
**dparams (Dict[str, Any]): Additional arguments. |
155
|
|
|
|
156
|
|
|
Returns: |
157
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, Dict[str, Any]]: |
158
|
|
|
1. New population. |
159
|
|
|
2. New populations fitness/function values. |
160
|
|
|
3. New global best solution |
161
|
|
|
4. New global best solutions fitness/objective value |
162
|
|
|
5. Additional arguments: |
163
|
|
|
* v (numpy.ndarray): TODO |
164
|
|
|
""" |
165
|
|
|
ib, iw = argmin(X_f), argmax(X_f) |
166
|
|
|
m = (X_f - X_f[iw]) / (X_f[ib] - X_f[iw]) |
167
|
|
|
M = m / sum(m) |
168
|
|
|
Fi = asarray([[self.G(task.Iters) * ((M[i] * M[j]) / (self.d(X[i], X[j]) + self.epsilon)) * (X[j] - X[i]) for j in range(len(M))] for i in range(len(M))]) |
169
|
|
|
F = sum(self.rand([self.NP, task.D]) * Fi, axis=1) |
170
|
|
|
a = F.T / (M + self.epsilon) |
171
|
|
|
v = self.rand([self.NP, task.D]) * v + a.T |
172
|
|
|
X = apply_along_axis(task.repair, 1, X + v, self.Rand) |
173
|
|
|
X_f = apply_along_axis(task.eval, 1, X) |
174
|
|
|
xb, fxb = self.getBest(X, X_f, xb, fxb) |
175
|
|
|
return X, X_f, xb, fxb, {'v': v} |
176
|
|
|
|
177
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
178
|
|
|
|