|
1
|
|
|
# encoding=utf8 |
|
2
|
|
|
import logging |
|
3
|
|
|
|
|
4
|
|
|
from numpy import random as rand, inf, ndarray, asarray, array_equal, argmin, apply_along_axis |
|
5
|
|
|
|
|
6
|
|
|
from NiaPy.util import FesException, GenException, TimeException, RefException |
|
7
|
|
|
from NiaPy.util.utility import objects2array |
|
8
|
|
|
|
|
9
|
|
|
logging.basicConfig() |
|
10
|
|
|
logger = logging.getLogger('NiaPy.util.utility') |
|
11
|
|
|
logger.setLevel('INFO') |
|
12
|
|
|
|
|
13
|
|
|
__all__ = [ |
|
14
|
|
|
'Algorithm', |
|
15
|
|
|
'Individual', |
|
16
|
|
|
'defaultIndividualInit', |
|
17
|
|
|
'defaultNumPyInit' |
|
18
|
|
|
] |
|
19
|
|
|
|
|
20
|
|
|
def defaultNumPyInit(task, NP, rnd=rand, **kwargs): |
|
21
|
|
|
r"""Initialize starting population that is represented with `numpy.ndarray` with shape `{NP, task.D}`. |
|
22
|
|
|
|
|
23
|
|
|
Args: |
|
24
|
|
|
task (Task): Optimization task. |
|
25
|
|
|
NP (int): Number of individuals in population. |
|
26
|
|
|
rnd (Optional[mtrand.RandomState]): Random number generator. |
|
27
|
|
|
kwargs (Dict[str, Any]): Additional arguments. |
|
28
|
|
|
|
|
29
|
|
|
Returns: |
|
30
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float]]: |
|
31
|
|
|
1. New population with shape `{NP, task.D}`. |
|
32
|
|
|
2. New population function/fitness values. |
|
33
|
|
|
""" |
|
34
|
|
|
pop = task.Lower + rnd.rand(NP, task.D) * task.bRange |
|
35
|
|
|
fpop = apply_along_axis(task.eval, 1, pop) |
|
36
|
|
|
return pop, fpop |
|
37
|
|
|
|
|
38
|
|
|
def defaultIndividualInit(task, NP, rnd=rand, itype=None, **kwargs): |
|
39
|
|
|
r"""Initialize `NP` individuals of type `itype`. |
|
40
|
|
|
|
|
41
|
|
|
Args: |
|
42
|
|
|
task (Task): Optimization task. |
|
43
|
|
|
NP (int): Number of individuals in population. |
|
44
|
|
|
rnd (Optional[mtrand.RandomState]): Random number generator. |
|
45
|
|
|
itype (Optional[Individual]): Class of individual in population. |
|
46
|
|
|
kwargs (Dict[str, Any]): Additional arguments. |
|
47
|
|
|
|
|
48
|
|
|
Returns: |
|
49
|
|
|
Tuple[numpy.ndarray[Individual], numpy.ndarray[float]: |
|
50
|
|
|
1. Initialized individuals. |
|
51
|
|
|
2. Initialized individuals function/fitness values. |
|
52
|
|
|
""" |
|
53
|
|
|
pop = objects2array([itype(task=task, rnd=rnd, e=True) for _ in range(NP)]) |
|
54
|
|
|
return pop, asarray([x.f for x in pop]) |
|
55
|
|
|
|
|
56
|
|
|
class Algorithm: |
|
57
|
|
|
r"""Class for implementing algorithms. |
|
58
|
|
|
|
|
59
|
|
|
Date: |
|
60
|
|
|
2018 |
|
61
|
|
|
|
|
62
|
|
|
Author |
|
63
|
|
|
Klemen Berkovič |
|
64
|
|
|
|
|
65
|
|
|
License: |
|
66
|
|
|
MIT |
|
67
|
|
|
|
|
68
|
|
|
Attributes: |
|
69
|
|
|
Name (List[str]): List of names for algorithm. |
|
70
|
|
|
Rand (mtrand.RandomState): Random generator. |
|
71
|
|
|
NP (int): Number of inidividuals in populatin. |
|
72
|
|
|
InitPopFunc (Callable[[int, Task, mtrand.RandomState, Dict[str, Any]], Tuple[numpy.ndarray, numpy.ndarray[float]]]): Idividual initialization function. |
|
73
|
|
|
itype (Individual): Type of individuals used in population, default value is None for Numpy arrays. |
|
74
|
|
|
""" |
|
75
|
|
|
Name = ['Algorithm', 'AAA'] |
|
76
|
|
|
Rand = rand.RandomState(None) |
|
|
|
|
|
|
77
|
|
|
NP = 50 |
|
78
|
|
|
InitPopFunc = defaultNumPyInit |
|
79
|
|
|
itype = None |
|
80
|
|
|
|
|
81
|
|
|
@staticmethod |
|
82
|
|
|
def typeParameters(): |
|
83
|
|
|
r"""Return functions for checking values of parameters. |
|
84
|
|
|
|
|
85
|
|
|
Return: |
|
86
|
|
|
Dict[str, Callable]: |
|
87
|
|
|
* NP (Callable[[int], bool]): Check if number of individuals is :math:`\in [0, \infty]`. |
|
88
|
|
|
""" |
|
89
|
|
|
return {'NP': lambda x: isinstance(x, int) and x > 0} |
|
90
|
|
|
|
|
91
|
|
|
def __init__(self, **kwargs): |
|
92
|
|
|
r"""Initialize algorithm and create name for an algorithm. |
|
93
|
|
|
|
|
94
|
|
|
Args: |
|
95
|
|
|
seed (int): Starting seed for random generator. |
|
96
|
|
|
|
|
97
|
|
|
See Also: |
|
98
|
|
|
* :func:`NiaPy.algorithms.Algorithm.setParameters` |
|
99
|
|
|
""" |
|
100
|
|
|
self.Rand, self.exception = rand.RandomState(kwargs.pop('seed', None)), None |
|
101
|
|
|
self.setParameters(**kwargs) |
|
102
|
|
|
|
|
103
|
|
|
@staticmethod |
|
104
|
|
|
def algorithmInfo(): |
|
105
|
|
|
r"""Get algorithm information. |
|
106
|
|
|
|
|
107
|
|
|
Returns: |
|
108
|
|
|
str: Bit item. |
|
109
|
|
|
""" |
|
110
|
|
|
return '''Basic algorithm. No implementation!!!''' |
|
111
|
|
|
|
|
112
|
|
|
def setParameters(self, NP=50, InitPopFunc=defaultNumPyInit, itype=None, **kwargs): |
|
113
|
|
|
r"""Set the parameters/arguments of the algorithm. |
|
114
|
|
|
|
|
115
|
|
|
Args: |
|
116
|
|
|
NP (Optional[int]): Number of individuals in population :math:`\in [1, \infty]`. |
|
117
|
|
|
InitPopFunc (Optional[Callable[[int, Task, mtrand.RandomState, Dict[str, Any]], Tuple[numpy.ndarray, numpy.ndarray[float]]]]): Type of individuals used by algorithm. |
|
118
|
|
|
itype (Optional[Any]): Individual type used in population, default is Numpy array. |
|
119
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
|
120
|
|
|
|
|
121
|
|
|
See Also: |
|
122
|
|
|
* :func:`NiaPy.algorithms.defaultNumPyInit` |
|
123
|
|
|
* :func:`NiaPy.algorithms.defaultIndividualInit` |
|
124
|
|
|
""" |
|
125
|
|
|
self.NP, self.InitPopFunc, self.itype = NP, InitPopFunc, itype |
|
126
|
|
|
|
|
127
|
|
|
def getParameters(self): |
|
128
|
|
|
r"""Get parameters of the algorithm. |
|
129
|
|
|
|
|
130
|
|
|
Returns: |
|
131
|
|
|
Dict[str, Any]: |
|
132
|
|
|
* Parameter name (str): Represents a parameter name |
|
133
|
|
|
* Value of parameter (Any): Represents the value of the parameter |
|
134
|
|
|
""" |
|
135
|
|
|
return { |
|
136
|
|
|
'NP': self.NP, |
|
137
|
|
|
'InitPopFunc': self.InitPopFunc, |
|
138
|
|
|
'itype': self.itype |
|
139
|
|
|
} |
|
140
|
|
|
|
|
141
|
|
|
def rand(self, D=1): |
|
142
|
|
|
r"""Get random distribution of shape D in range from 0 to 1. |
|
143
|
|
|
|
|
144
|
|
|
Args: |
|
145
|
|
|
D (numpy.ndarray[int]): Shape of returned random distribution. |
|
146
|
|
|
|
|
147
|
|
|
Returns: |
|
148
|
|
|
Union[numpy.ndarray[float], float]: Random number or numbers :math:`\in [0, 1]`. |
|
149
|
|
|
""" |
|
150
|
|
|
if isinstance(D, (ndarray, list)): return self.Rand.rand(*D) |
|
151
|
|
|
elif D > 1: return self.Rand.rand(D) |
|
152
|
|
|
else: return self.Rand.rand() |
|
153
|
|
|
|
|
154
|
|
|
def uniform(self, Lower, Upper, D=None): |
|
155
|
|
|
r"""Get uniform random distribution of shape D in range from "Lower" to "Upper". |
|
156
|
|
|
|
|
157
|
|
|
Args: |
|
158
|
|
|
Lower (Iterable[float]): Lower bound. |
|
159
|
|
|
Upper (Iterable[float]): Upper bound. |
|
160
|
|
|
D (Union[int, Iterable[int]]): Shape of returned uniform random distribution. |
|
161
|
|
|
|
|
162
|
|
|
Returns: |
|
163
|
|
|
Union[numpy.ndarray[float], float]: Array of numbers :math:`\in [\mathit{Lower}, \mathit{Upper}]`. |
|
164
|
|
|
""" |
|
165
|
|
|
return self.Rand.uniform(Lower, Upper, D) if D is not None else self.Rand.uniform(Lower, Upper) |
|
166
|
|
|
|
|
167
|
|
|
def normal(self, loc, scale, D=None): |
|
168
|
|
|
r"""Get normal random distribution of shape D with mean "loc" and standard deviation "scale". |
|
169
|
|
|
|
|
170
|
|
|
Args: |
|
171
|
|
|
loc (float): Mean of the normal random distribution. |
|
172
|
|
|
scale (float): Standard deviation of the normal random distribution. |
|
173
|
|
|
D (Union[int, Iterable[int]]): Shape of returned normal random distribution. |
|
174
|
|
|
|
|
175
|
|
|
Returns: |
|
176
|
|
|
Union[numpy.ndarray[float], float]: Array of numbers. |
|
177
|
|
|
""" |
|
178
|
|
|
return self.Rand.normal(loc, scale, D) if D is not None else self.Rand.normal(loc, scale) |
|
179
|
|
|
|
|
180
|
|
|
def randn(self, D=None): |
|
181
|
|
|
r"""Get standard normal distribution of shape D. |
|
182
|
|
|
|
|
183
|
|
|
Args: |
|
184
|
|
|
D (Union[int, Iterable[int]]): Shape of returned standard normal distribution. |
|
185
|
|
|
|
|
186
|
|
|
Returns: |
|
187
|
|
|
Union[numpy.ndarray[float], float]: Random generated numbers or one random generated number :math:`\in [0, 1]`. |
|
188
|
|
|
""" |
|
189
|
|
|
if D is None: return self.Rand.randn() |
|
190
|
|
|
elif isinstance(D, int): return self.Rand.randn(D) |
|
191
|
|
|
return self.Rand.randn(*D) |
|
192
|
|
|
|
|
193
|
|
|
def randint(self, Nmax, D=1, Nmin=0, skip=None): |
|
194
|
|
|
r"""Get discrete uniform (integer) random distribution of D shape in range from "Nmin" to "Nmax". |
|
195
|
|
|
|
|
196
|
|
|
Args: |
|
197
|
|
|
Nmin (int): Lower integer bound. |
|
198
|
|
|
Nmax (int): One above upper integer bound. |
|
199
|
|
|
D (Union[int, Iterable[int]]): shape of returned discrete uniform random distribution. |
|
200
|
|
|
skip (Union[int, Iterable[int], numpy.ndarray[int]]): numbers to skip. |
|
201
|
|
|
|
|
202
|
|
|
Returns: |
|
203
|
|
|
Union[int, numpy.ndarrayj[int]]: Random generated integer number. |
|
204
|
|
|
""" |
|
205
|
|
|
r = None |
|
206
|
|
|
if isinstance(D, (list, tuple, ndarray)): r = self.Rand.randint(Nmin, Nmax, D) |
|
207
|
|
|
elif D > 1: r = self.Rand.randint(Nmin, Nmax, D) |
|
208
|
|
|
else: r = self.Rand.randint(Nmin, Nmax) |
|
209
|
|
|
return r if skip is None or r not in skip else self.randint(Nmax, D, Nmin, skip) |
|
210
|
|
|
|
|
211
|
|
|
def getBest(self, X, X_f, xb=None, xb_f=inf): |
|
212
|
|
|
r"""Get the best individual for population. |
|
213
|
|
|
|
|
214
|
|
|
Args: |
|
215
|
|
|
X (numpy.ndarray): Current population. |
|
216
|
|
|
X_f (numpy.ndarray): Current populations fitness/function values of aligned individuals. |
|
217
|
|
|
xb (numpy.ndarray): Best individual. |
|
218
|
|
|
xb_f (float): Fitness value of best individual. |
|
219
|
|
|
|
|
220
|
|
|
Returns: |
|
221
|
|
|
Tuple[numpy.ndarray, float]: |
|
222
|
|
|
1. Coordinates of best solution. |
|
223
|
|
|
2. beset fitness/function value. |
|
224
|
|
|
""" |
|
225
|
|
|
ib = argmin(X_f) |
|
226
|
|
|
if isinstance(X_f, (float, int)) and xb_f >= X_f: xb, xb_f = X, X_f |
|
227
|
|
|
elif isinstance(X_f, (ndarray, list)) and xb_f >= X_f[ib]: xb, xb_f = X[ib], X_f[ib] |
|
228
|
|
|
return (xb.x.copy() if isinstance(xb, Individual) else xb.copy()), xb_f |
|
229
|
|
|
|
|
230
|
|
|
def initPopulation(self, task): |
|
231
|
|
|
r"""Initialize starting population of optimization algorithm. |
|
232
|
|
|
|
|
233
|
|
|
Args: |
|
234
|
|
|
task (Task): Optimization task. |
|
235
|
|
|
|
|
236
|
|
|
Returns: |
|
237
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, Dict[str, Any]]: |
|
238
|
|
|
1. New population. |
|
239
|
|
|
2. New population fitness values. |
|
240
|
|
|
3. Additional arguments. |
|
241
|
|
|
|
|
242
|
|
|
See Also: |
|
243
|
|
|
* :func:`NiaPy.algorithms.Algorithm.setParameters` |
|
244
|
|
|
""" |
|
245
|
|
|
pop, fpop = self.InitPopFunc(task=task, NP=self.NP, rnd=self.Rand, itype=self.itype) |
|
246
|
|
|
return pop, fpop, {} |
|
247
|
|
|
|
|
248
|
|
|
def runIteration(self, task, pop, fpop, xb, fxb, **dparams): |
|
249
|
|
|
r"""Core functionality of algorithm. |
|
250
|
|
|
|
|
251
|
|
|
This function is called on every algorithm iteration. |
|
252
|
|
|
|
|
253
|
|
|
Args: |
|
254
|
|
|
task (Task): Optimization task. |
|
255
|
|
|
pop (numpy.ndarray): Current population coordinates. |
|
256
|
|
|
fpop (numpy.ndarray): Current population fitness value. |
|
257
|
|
|
xb (numpy.ndarray): Current generation best individuals coordinates. |
|
258
|
|
|
xb_f (float): current generation best individuals fitness value. |
|
259
|
|
|
**dparams (Dict[str, Any]): Additional arguments for algorithms. |
|
260
|
|
|
|
|
261
|
|
|
Returns: |
|
262
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, Dict[str, Any]]: |
|
263
|
|
|
1. New populations coordinates. |
|
264
|
|
|
2. New populations fitness values. |
|
265
|
|
|
3. New global best position/solution |
|
266
|
|
|
4. New global best fitness/objective value |
|
267
|
|
|
5. Additional arguments of the algorithm. |
|
268
|
|
|
|
|
269
|
|
|
See Also: |
|
270
|
|
|
* :func:`NiaPy.algorithms.Algorithm.runYield` |
|
271
|
|
|
""" |
|
272
|
|
|
return pop, fpop, xb, fxb, dparams |
|
273
|
|
|
|
|
274
|
|
|
def runYield(self, task): |
|
275
|
|
|
r"""Run the algorithm for a single iteration and return the best solution. |
|
276
|
|
|
|
|
277
|
|
|
Args: |
|
278
|
|
|
task (Task): Task with bounds and objective function for optimization. |
|
279
|
|
|
|
|
280
|
|
|
Returns: |
|
281
|
|
|
Generator[Tuple[numpy.ndarray, float], None, None]: Generator getting new/old optimal global values. |
|
282
|
|
|
|
|
283
|
|
|
Yield: |
|
284
|
|
|
Tuple[numpy.ndarray, float]: |
|
285
|
|
|
1. New population best individuals coordinates. |
|
286
|
|
|
2. Fitness value of the best solution. |
|
287
|
|
|
|
|
288
|
|
|
See Also: |
|
289
|
|
|
* :func:`NiaPy.algorithms.Algorithm.initPopulation` |
|
290
|
|
|
* :func:`NiaPy.algorithms.Algorithm.runIteration` |
|
291
|
|
|
""" |
|
292
|
|
|
pop, fpop, dparams = self.initPopulation(task) |
|
293
|
|
|
xb, fxb = self.getBest(pop, fpop) |
|
294
|
|
|
yield xb, fxb |
|
295
|
|
|
while True: |
|
296
|
|
|
pop, fpop, xb, fxb, dparams = self.runIteration(task, pop, fpop, xb, fxb, **dparams) |
|
297
|
|
|
yield xb, fxb |
|
298
|
|
|
|
|
299
|
|
|
def runTask(self, task): |
|
300
|
|
|
r"""Start the optimization. |
|
301
|
|
|
|
|
302
|
|
|
Args: |
|
303
|
|
|
task (Task): Task with bounds and objective function for optimization. |
|
304
|
|
|
|
|
305
|
|
|
Returns: |
|
306
|
|
|
Tuple[numpy.ndarray, float]: |
|
307
|
|
|
1. Best individuals components found in optimization process. |
|
308
|
|
|
2. Best fitness value found in optimization process. |
|
309
|
|
|
|
|
310
|
|
|
See Also: |
|
311
|
|
|
* :func:`NiaPy.algorithms.Algorithm.runYield` |
|
312
|
|
|
""" |
|
313
|
|
|
algo, xb, fxb = self.runYield(task), None, inf |
|
314
|
|
|
while not task.stopCond(): |
|
315
|
|
|
xb, fxb = next(algo) |
|
316
|
|
|
task.nextIter() |
|
317
|
|
|
return xb, fxb |
|
318
|
|
|
|
|
319
|
|
|
def run(self, task): |
|
320
|
|
|
r"""Start the optimization. |
|
321
|
|
|
|
|
322
|
|
|
Args: |
|
323
|
|
|
task (Task): Optimization task. |
|
324
|
|
|
|
|
325
|
|
|
Returns: |
|
326
|
|
|
Tuple[numpy.ndarray, float]: |
|
327
|
|
|
1. Best individuals components found in optimization process. |
|
328
|
|
|
2. Best fitness value found in optimization process. |
|
329
|
|
|
|
|
330
|
|
|
See Also: |
|
331
|
|
|
* :func:`NiaPy.algorithms.Algorithm.runTask` |
|
332
|
|
|
""" |
|
333
|
|
|
try: |
|
334
|
|
|
# task.start() |
|
335
|
|
|
r = self.runTask(task) |
|
336
|
|
|
return r[0], r[1] * task.optType.value |
|
337
|
|
|
except (FesException, GenException, TimeException, RefException): return task.x, task.x_f * task.optType.value |
|
338
|
|
|
return None, None |
|
339
|
|
|
|
|
340
|
|
|
def bad_run(self): |
|
341
|
|
|
r"""Check if some exeptions where thrown when the algorithm was running. |
|
342
|
|
|
|
|
343
|
|
|
Returns: |
|
344
|
|
|
bool: True if some error where detected at runtime of the algorithm, otherwise False |
|
345
|
|
|
""" |
|
346
|
|
|
return self.exception is not None |
|
347
|
|
|
|
|
348
|
|
|
class Individual: |
|
349
|
|
|
r"""Class that represents one solution in population of solutions. |
|
350
|
|
|
|
|
351
|
|
|
Date: |
|
352
|
|
|
2018 |
|
353
|
|
|
|
|
354
|
|
|
Author: |
|
355
|
|
|
Klemen Berkovič |
|
356
|
|
|
|
|
357
|
|
|
License: |
|
358
|
|
|
MIT |
|
359
|
|
|
|
|
360
|
|
|
Attributes: |
|
361
|
|
|
x (numpy.ndarray): Coordinates of individual. |
|
362
|
|
|
f (float): Function/fitness value of individual. |
|
363
|
|
|
""" |
|
364
|
|
|
x = None |
|
365
|
|
|
f = inf |
|
366
|
|
|
|
|
367
|
|
|
def __init__(self, x=None, task=None, e=True, rnd=rand, **kwargs): |
|
368
|
|
|
r"""Initialize new individual. |
|
369
|
|
|
|
|
370
|
|
|
Parameters: |
|
371
|
|
|
task (Optional[Task]): Optimization task. |
|
372
|
|
|
rand (Optional[mtrand.RandomState]): Random generator. |
|
373
|
|
|
x (Optional[numpy.ndarray]): Individuals components. |
|
374
|
|
|
e (Optional[bool]): True to evaluate the individual on initialization. Default value is True. |
|
375
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
|
376
|
|
|
""" |
|
377
|
|
|
self.f = task.optType.value * inf if task is not None else inf |
|
378
|
|
|
if x is not None: self.x = x if isinstance(x, ndarray) else asarray(x) |
|
379
|
|
|
else: self.generateSolution(task, rnd) |
|
380
|
|
|
if e and task is not None: self.evaluate(task, rnd) |
|
381
|
|
|
|
|
382
|
|
|
def generateSolution(self, task, rnd=rand): |
|
383
|
|
|
r"""Generate new solution. |
|
384
|
|
|
|
|
385
|
|
|
Generate new solution for this individual and set it to ``self.x``. |
|
386
|
|
|
This method uses ``rnd`` for getting random numbers. |
|
387
|
|
|
For generating random components ``rnd`` and ``task`` is used. |
|
388
|
|
|
|
|
389
|
|
|
Args: |
|
390
|
|
|
task (Task): Optimization task. |
|
391
|
|
|
rnd (Optional[mtrand.RandomState]): Random numbers generator object. |
|
392
|
|
|
""" |
|
393
|
|
|
if task is not None: self.x = task.Lower + task.bRange * rnd.rand(task.D) |
|
394
|
|
|
|
|
395
|
|
|
def evaluate(self, task, rnd=rand): |
|
396
|
|
|
r"""Evaluate the solution. |
|
397
|
|
|
|
|
398
|
|
|
Evaluate solution ``this.x`` with the help of task. |
|
399
|
|
|
Task is used for reparing the solution and then evaluating it. |
|
400
|
|
|
|
|
401
|
|
|
Args: |
|
402
|
|
|
task (Task): Objective function object. |
|
403
|
|
|
rnd (Optional[mtrand.RandomState]): Random generator. |
|
404
|
|
|
|
|
405
|
|
|
See Also: |
|
406
|
|
|
* :func:`NiaPy.util.Task.repair` |
|
407
|
|
|
""" |
|
408
|
|
|
self.x = task.repair(self.x, rnd=rnd) |
|
409
|
|
|
self.f = task.eval(self.x) |
|
410
|
|
|
|
|
411
|
|
|
def copy(self): |
|
412
|
|
|
r"""Return a copy of self. |
|
413
|
|
|
|
|
414
|
|
|
Method returns copy of ``this`` object so it is safe for editing. |
|
415
|
|
|
|
|
416
|
|
|
Returns: |
|
417
|
|
|
Individual: Copy of self. |
|
418
|
|
|
""" |
|
419
|
|
|
return Individual(x=self.x.copy(), f=self.f, e=False) |
|
420
|
|
|
|
|
421
|
|
|
def __eq__(self, other): |
|
422
|
|
|
r"""Compare the individuals for equalities. |
|
423
|
|
|
|
|
424
|
|
|
Args: |
|
425
|
|
|
other (Union[Any, numpy.ndarray]): Object that we want to compare this object to. |
|
426
|
|
|
|
|
427
|
|
|
Returns: |
|
428
|
|
|
bool: `True` if equal or `False` if no equal. |
|
429
|
|
|
""" |
|
430
|
|
|
if isinstance(other, ndarray): |
|
431
|
|
|
for e in other: |
|
432
|
|
|
if self == e: return True |
|
433
|
|
|
return False |
|
434
|
|
|
return array_equal(self.x, other.x) and self.f == other.f |
|
435
|
|
|
|
|
436
|
|
|
def __str__(self): |
|
437
|
|
|
r"""Print the individual with the solution and objective value. |
|
438
|
|
|
|
|
439
|
|
|
Returns: |
|
440
|
|
|
str: String representation of self. |
|
441
|
|
|
""" |
|
442
|
|
|
return '%s -> %s' % (self.x, self.f) |
|
443
|
|
|
|
|
444
|
|
|
def __getitem__(self, i): |
|
445
|
|
|
r"""Get the value of i-th component of the solution. |
|
446
|
|
|
|
|
447
|
|
|
Args: |
|
448
|
|
|
i (int): Position of the solution component. |
|
449
|
|
|
|
|
450
|
|
|
Returns: |
|
451
|
|
|
Any: Value of ith component. |
|
452
|
|
|
""" |
|
453
|
|
|
return self.x[i] |
|
454
|
|
|
|
|
455
|
|
|
def __setitem__(self, i, v): |
|
456
|
|
|
r"""Set the value of i-th component of the solution to v value. |
|
457
|
|
|
|
|
458
|
|
|
Args: |
|
459
|
|
|
i (int): Position of the solution component. |
|
460
|
|
|
v (Any): Value to set to i-th component. |
|
461
|
|
|
""" |
|
462
|
|
|
self.x[i] = v |
|
463
|
|
|
|
|
464
|
|
|
def __len__(self): |
|
465
|
|
|
r"""Get the length of the solution or the number of components. |
|
466
|
|
|
|
|
467
|
|
|
Returns: |
|
468
|
|
|
int: Number of components. |
|
469
|
|
|
""" |
|
470
|
|
|
return len(self.x) |
|
471
|
|
|
|
|
472
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
|
473
|
|
|
|