1
|
|
|
# encoding=utf8 |
2
|
|
|
|
3
|
|
|
"""Implementation of various utility functions.""" |
4
|
|
|
|
5
|
|
|
import logging |
6
|
|
|
|
7
|
|
|
from numpy import ( |
8
|
|
|
ndarray, |
9
|
|
|
asarray, |
10
|
|
|
full, |
11
|
|
|
empty, |
12
|
|
|
where, |
13
|
|
|
random as rand, |
14
|
|
|
ceil, |
15
|
|
|
amin, |
16
|
|
|
amax |
17
|
|
|
) |
18
|
|
|
|
19
|
|
|
logging.basicConfig() |
20
|
|
|
logger = logging.getLogger("NiaPy.util.utility") |
21
|
|
|
logger.setLevel("INFO") |
22
|
|
|
|
23
|
|
|
__all__ = [ |
24
|
|
|
"limit_repair", |
25
|
|
|
"limitInversRepair", |
26
|
|
|
"objects2array", |
27
|
|
|
"wangRepair", |
28
|
|
|
"randRepair", |
29
|
|
|
"fullArray", |
30
|
|
|
"reflectRepair" |
31
|
|
|
] |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
def limit_repair(x, Lower, Upper, **kwargs): |
35
|
|
|
r"""Repair solution and put the solution in the random position inside of the bounds of problem. |
36
|
|
|
|
37
|
|
|
Arguments: |
38
|
|
|
x (numpy.ndarray): Solution to check and repair if needed. |
39
|
|
|
Lower (numpy.ndarray): Lower bounds of search space. |
40
|
|
|
Upper (numpy.ndarray): Upper bounds of search space. |
41
|
|
|
kwargs (Dict[str, Any]): Additional arguments. |
42
|
|
|
|
43
|
|
|
Returns: |
44
|
|
|
numpy.ndarray: Solution in search space. |
45
|
|
|
|
46
|
|
|
""" |
47
|
|
|
|
48
|
|
|
# TODO: Add one-liner np.clip approach |
49
|
|
|
|
50
|
|
|
ir = where(x < Lower) |
51
|
|
|
x[ir] = Lower[ir] |
52
|
|
|
ir = where(x > Upper) |
53
|
|
|
x[ir] = Upper[ir] |
54
|
|
|
return x |
55
|
|
|
|
56
|
|
|
|
57
|
|
|
def limitInversRepair(x, Lower, Upper, **kwargs): |
58
|
|
|
r"""Repair solution and put the solution in the random position inside of the bounds of problem. |
59
|
|
|
|
60
|
|
|
Arguments: |
61
|
|
|
x (numpy.ndarray): Solution to check and repair if needed. |
62
|
|
|
Lower (numpy.ndarray): Lower bounds of search space. |
63
|
|
|
Upper (numpy.ndarray): Upper bounds of search space. |
64
|
|
|
kwargs (Dict[str, Any]): Additional arguments. |
65
|
|
|
|
66
|
|
|
Returns: |
67
|
|
|
numpy.ndarray: Solution in search space. |
68
|
|
|
|
69
|
|
|
""" |
70
|
|
|
|
71
|
|
|
ir = where(x < Lower) |
72
|
|
|
x[ir] = Upper[ir] |
73
|
|
|
ir = where(x > Upper) |
74
|
|
|
x[ir] = Lower[ir] |
75
|
|
|
return x |
76
|
|
|
|
77
|
|
|
|
78
|
|
|
def wangRepair(x, Lower, Upper, **kwargs): |
79
|
|
|
r"""Repair solution and put the solution in the random position inside of the bounds of problem. |
80
|
|
|
|
81
|
|
|
Arguments: |
82
|
|
|
x (numpy.ndarray): Solution to check and repair if needed. |
83
|
|
|
Lower (numpy.ndarray): Lower bounds of search space. |
84
|
|
|
Upper (numpy.ndarray): Upper bounds of search space. |
85
|
|
|
kwargs (Dict[str, Any]): Additional arguments. |
86
|
|
|
|
87
|
|
|
Returns: |
88
|
|
|
numpy.ndarray: Solution in search space. |
89
|
|
|
|
90
|
|
|
""" |
91
|
|
|
|
92
|
|
|
ir = where(x < Lower) |
93
|
|
|
x[ir] = amin([Upper[ir], 2 * Lower[ir] - x[ir]], axis=0) |
94
|
|
|
ir = where(x > Upper) |
95
|
|
|
x[ir] = amax([Lower[ir], 2 * Upper[ir] - x[ir]], axis=0) |
96
|
|
|
return x |
97
|
|
|
|
98
|
|
|
|
99
|
|
|
def randRepair(x, Lower, Upper, rnd=rand, **kwargs): |
100
|
|
|
r"""Repair solution and put the solution in the random position inside of the bounds of problem. |
101
|
|
|
|
102
|
|
|
Arguments: |
103
|
|
|
x (numpy.ndarray): Solution to check and repair if needed. |
104
|
|
|
Lower (numpy.ndarray): Lower bounds of search space. |
105
|
|
|
Upper (numpy.ndarray): Upper bounds of search space. |
106
|
|
|
rnd (mtrand.RandomState): Random generator. |
107
|
|
|
kwargs (Dict[str, Any]): Additional arguments. |
108
|
|
|
|
109
|
|
|
Returns: |
110
|
|
|
numpy.ndarray: Fixed solution. |
111
|
|
|
|
112
|
|
|
""" |
113
|
|
|
|
114
|
|
|
ir = where(x < Lower) |
115
|
|
|
x[ir] = rnd.uniform(Lower[ir], Upper[ir]) |
116
|
|
|
ir = where(x > Upper) |
117
|
|
|
x[ir] = rnd.uniform(Lower[ir], Upper[ir]) |
118
|
|
|
return x |
119
|
|
|
|
120
|
|
|
|
121
|
|
|
def reflectRepair(x, Lower, Upper, **kwargs): |
122
|
|
|
r"""Repair solution and put the solution in search space with reflection of how much the solution violates a bound. |
123
|
|
|
|
124
|
|
|
Args: |
125
|
|
|
x (numpy.ndarray): Solution to be fixed. |
126
|
|
|
Lower (numpy.ndarray): Lower bounds of search space. |
127
|
|
|
Upper (numpy.ndarray): Upper bounds of search space. |
128
|
|
|
kwargs (Dict[str, Any]): Additional arguments. |
129
|
|
|
|
130
|
|
|
Returns: |
131
|
|
|
numpy.ndarray: Fix solution. |
132
|
|
|
|
133
|
|
|
""" |
134
|
|
|
|
135
|
|
|
ir = where(x > Upper) |
136
|
|
|
x[ir] = Lower[ir] + x[ir] % (Upper[ir] - Lower[ir]) |
137
|
|
|
ir = where(x < Lower) |
138
|
|
|
x[ir] = Lower[ir] + x[ir] % (Upper[ir] - Lower[ir]) |
139
|
|
|
return x |
140
|
|
|
|
141
|
|
|
|
142
|
|
|
def fullArray(a, D): |
143
|
|
|
r"""Fill or create array of length D, from value or value form a. |
144
|
|
|
|
145
|
|
|
Arguments: |
146
|
|
|
a (Union[int, float, numpy.ndarray], Iterable[Any]): Input values for fill. |
147
|
|
|
D (int): Length of new array. |
148
|
|
|
|
149
|
|
|
Returns: |
150
|
|
|
numpy.ndarray: Array filled with passed values or value. |
151
|
|
|
|
152
|
|
|
""" |
153
|
|
|
|
154
|
|
|
A = [] |
155
|
|
|
|
156
|
|
|
if isinstance(a, (int, float)): |
157
|
|
|
A = full(D, a) |
158
|
|
|
elif isinstance(a, (ndarray, list, tuple)): |
159
|
|
|
if len(a) == D: |
160
|
|
|
A = a if isinstance(a, ndarray) else asarray(a) |
161
|
|
|
elif len(a) > D: |
162
|
|
|
A = a[:D] if isinstance(a, ndarray) else asarray(a[:D]) |
163
|
|
|
else: |
164
|
|
|
for i in range(int(ceil(float(D) / len(a)))): |
165
|
|
|
A.extend(a[:D if (D - i * len(a)) >= len(a) else D - i * len(a)]) |
166
|
|
|
A = asarray(A) |
167
|
|
|
return A |
168
|
|
|
|
169
|
|
|
|
170
|
|
|
def objects2array(objs): |
171
|
|
|
r"""Convert `Iterable` array or list to `NumPy` array. |
172
|
|
|
|
173
|
|
|
Args: |
174
|
|
|
objs (Iterable[Any]): Array or list to convert. |
175
|
|
|
|
176
|
|
|
Returns: |
177
|
|
|
numpy.ndarray: Array of objects. |
178
|
|
|
|
179
|
|
|
""" |
180
|
|
|
|
181
|
|
|
a = empty(len(objs), dtype=object) |
182
|
|
|
for i, e in enumerate(objs): |
183
|
|
|
a[i] = e |
184
|
|
|
return a |
185
|
|
|
|