1
|
|
|
# encoding=utf8 |
2
|
|
|
|
3
|
|
|
"""Stybliski Tang benchmark.""" |
4
|
|
|
|
5
|
|
|
import math |
6
|
|
|
from NiaPy.benchmarks.benchmark import Benchmark |
7
|
|
|
|
8
|
|
|
__all__ = ['StyblinskiTang'] |
9
|
|
|
|
10
|
|
View Code Duplication |
class StyblinskiTang(Benchmark): |
|
|
|
|
11
|
|
|
r"""Implementation of Styblinski-Tang functions. |
12
|
|
|
|
13
|
|
|
Date: 2018 |
14
|
|
|
|
15
|
|
|
Authors: Lucija Brezočnik |
16
|
|
|
|
17
|
|
|
License: MIT |
18
|
|
|
|
19
|
|
|
Function: **Styblinski-Tang function** |
20
|
|
|
|
21
|
|
|
:math:`f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^D \left( |
22
|
|
|
x_i^4 - 16x_i^2 + 5x_i \right)` |
23
|
|
|
|
24
|
|
|
**Input domain:** |
25
|
|
|
The function can be defined on any input domain but it is usually |
26
|
|
|
evaluated on the hypercube :math:`x_i ∈ [-5, 5]`, for all :math:`i = 1, 2,..., D`. |
27
|
|
|
|
28
|
|
|
**Global minimum:** :math:`f(x^*) = -78.332`, at :math:`x^* = (-2.903534,...,-2.903534)` |
29
|
|
|
|
30
|
|
|
LaTeX formats: |
31
|
|
|
Inline: |
32
|
|
|
$f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^D \left( |
33
|
|
|
x_i^4 - 16x_i^2 + 5x_i \right) $ |
34
|
|
|
|
35
|
|
|
Equation: |
36
|
|
|
\begin{equation}f(\mathbf{x}) = |
37
|
|
|
\frac{1}{2} \sum_{i=1}^D \left( x_i^4 - 16x_i^2 + 5x_i \right) \end{equation} |
38
|
|
|
|
39
|
|
|
Domain: |
40
|
|
|
$-5 \leq x_i \leq 5$ |
41
|
|
|
|
42
|
|
|
Reference paper: |
43
|
|
|
Jamil, M., and Yang, X. S. (2013). |
44
|
|
|
A literature survey of benchmark functions for global optimisation problems. |
45
|
|
|
International Journal of Mathematical Modelling and Numerical Optimisation, |
46
|
|
|
4(2), 150-194. |
47
|
|
|
""" |
48
|
|
|
Name = ['StyblinskiTang'] |
49
|
|
|
|
50
|
|
|
def __init__(self, Lower=-5.0, Upper=5.0): |
51
|
|
|
r"""Initialize of Styblinski Tang benchmark. |
52
|
|
|
|
53
|
|
|
Args: |
54
|
|
|
Lower (Optional[float]): Lower bound of problem. |
55
|
|
|
Upper (Optional[float]): Upper bound of problem. |
56
|
|
|
|
57
|
|
|
See Also: |
58
|
|
|
:func:`NiaPy.benchmarks.Benchmark.__init__` |
59
|
|
|
""" |
60
|
|
|
Benchmark.__init__(self, Lower, Upper) |
61
|
|
|
|
62
|
|
|
@staticmethod |
63
|
|
|
def latex_code(): |
64
|
|
|
r"""Return the latex code of the problem. |
65
|
|
|
|
66
|
|
|
Returns: |
67
|
|
|
str: Latex code |
68
|
|
|
""" |
69
|
|
|
return r'''$f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^D \left( |
70
|
|
|
x_i^4 - 16x_i^2 + 5x_i \right) $''' |
71
|
|
|
|
72
|
|
|
def function(self): |
73
|
|
|
r"""Return benchmark evaluation function. |
74
|
|
|
|
75
|
|
|
Returns: |
76
|
|
|
Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function |
77
|
|
|
""" |
78
|
|
|
def evaluate(D, sol): |
79
|
|
|
r"""Fitness function. |
80
|
|
|
|
81
|
|
|
Args: |
82
|
|
|
D (int): Dimensionality of the problem |
83
|
|
|
sol (Union[int, float, List[int, float], numpy.ndarray]): Solution to check. |
84
|
|
|
|
85
|
|
|
Returns: |
86
|
|
|
float: Fitness value for the solution. |
87
|
|
|
""" |
88
|
|
|
val = 0.0 |
89
|
|
|
|
90
|
|
|
for i in range(D): |
91
|
|
|
val += (math.pow(sol[i], 4) - 16.0 * math.pow(sol[i], 2) + 5.0 * sol[i]) |
92
|
|
|
|
93
|
|
|
return 0.5 * val |
94
|
|
|
|
95
|
|
|
return evaluate |
96
|
|
|
|