NiaPy.benchmarks.hgbat.HGBat.latex_code()   A
last analyzed

Complexity

Conditions 1

Size

Total Lines 8
Code Lines 3

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 3
nop 0
dl 0
loc 8
rs 10
c 0
b 0
f 0
1
# encoding=utf8
2
3
"""Implementations of HGBat functions."""
4
5
from math import fabs
6
from NiaPy.benchmarks.benchmark import Benchmark
7
8
__all__ = ['HGBat']
9
10
class HGBat(Benchmark):
11
	r"""Implementations of HGBat functions.
12
13
	Date: 2018
14
15
	Author: Klemen Berkovič
16
17
	License: MIT
18
19
	Function:
20
		**HGBat Function**
21
		:math:`f(\textbf{x}) = \left| \left( \sum_{i=1}^D x_i^2 \right)^2 - \left( \sum_{i=1}^D x_i \right)^2 \right|^{\frac{1}{2}} + \frac{0.5 \sum_{i=1}^D x_i^2 + \sum_{i=1}^D x_i}{D} + 0.5`
22
23
		**Input domain:**
24
		The function can be defined on any input domain but it is usually
25
		evaluated on the hypercube :math:`x_i ∈ [-100, 100]`, for all :math:`i = 1, 2,..., D`.
26
27
		**Global minimum:**
28
		:math:`f(x^*) = 0`, at :math:`x^* = (420.968746,...,420.968746)`
29
30
	LaTeX formats:
31
		Inline:
32
				$$f(\textbf{x}) = \left| \left( \sum_{i=1}^D x_i^2 \right)^2 - \left( \sum_{i=1}^D x_i \right)^2 \right|^{\frac{1}{2}} + \frac{0.5 \sum_{i=1}^D x_i^2 + \sum_{i=1}^D x_i}{D} + 0.5
33
34
		Equation:
35
				\begin{equation} f(\textbf{x}) = \left| \left( \sum_{i=1}^D x_i^2 \right)^2 - \left( \sum_{i=1}^D x_i \right)^2 \right|^{\frac{1}{2}} + \frac{0.5 \sum_{i=1}^D x_i^2 + \sum_{i=1}^D x_i}{D} + 0.5 \end{equation}
36
37
		Domain:
38
				$-100 \leq x_i \leq 100$
39
40
	Reference:
41
		http://www5.zzu.edu.cn/__local/A/69/BC/D3B5DFE94CD2574B38AD7CD1D12_C802DAFE_BC0C0.pdf
42
	"""
43
	Name = ['HGBat']
44
45
	def __init__(self, Lower=-100.0, Upper=100.0):
46
		r"""Initialize of HGBat benchmark.
47
48
		Args:
49
			Lower (Optional[float]): Lower bound of problem.
50
			Upper (Optional[float]): Upper bound of problem.
51
52
		See Also:
53
			:func:`NiaPy.benchmarks.Benchmark.__init__`
54
		"""
55
		Benchmark.__init__(self, Lower, Upper)
56
57
	@staticmethod
58
	def latex_code():
59
		r"""Return the latex code of the problem.
60
61
		Returns:
62
			str: Latex code
63
		"""
64
		return r'''$f(\textbf{x}) = \left| \left( \sum_{i=1}^D x_i^2 \right)^2 - \left( \sum_{i=1}^D x_i \right)^2 \right|^{\frac{1}{2}} + \frac{0.5 \sum_{i=1}^D x_i^2 + \sum_{i=1}^D x_i}{D} + 0.5$'''
65
66
	def function(self):
67
		r"""Return benchmark evaluation function.
68
69
		Returns:
70
			Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function
71
		"""
72
		def f(D, x):
73
			r"""Fitness function.
74
75
			Args:
76
				D (int): Dimensionality of the problem
77
				sol (Union[int, float, List[int, float], numpy.ndarray]): Solution to check.
78
79
			Returns:
80
				float: Fitness value for the solution.
81
			"""
82
			val1, val2 = 0.0, 0.0
83
			for i in range(D): val1 += x[i] ** 2
84
			for i in range(D): val2 += x[i]
85
			return fabs(val1 ** 2 - val2 ** 2) ** (1 / 2) + (0.5 * val1 + val2) / D + 0.5
86
		return f
87
88
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
89