1
|
|
|
# encoding=utf8 |
2
|
|
|
import logging |
3
|
|
|
from scipy.spatial.distance import euclidean |
4
|
|
|
from numpy import apply_along_axis, argmin, full, inf, where, asarray, random as rand, sort, exp |
5
|
|
|
from NiaPy.algorithms.algorithm import Algorithm |
6
|
|
|
from NiaPy.util import fullArray |
7
|
|
|
|
8
|
|
|
logging.basicConfig() |
9
|
|
|
logger = logging.getLogger('NiaPy.algorithms.other') |
10
|
|
|
logger.setLevel('INFO') |
11
|
|
|
|
12
|
|
|
__all__ = ['AnarchicSocietyOptimization', 'Elitism', 'Sequential', 'Crossover'] |
13
|
|
|
|
14
|
|
|
def Elitism(x, xpb, xb, xr, MP_c, MP_s, MP_p, F, CR, task, rnd=rand): |
15
|
|
|
r"""Select the best of all three strategies. |
16
|
|
|
|
17
|
|
|
Args: |
18
|
|
|
x (numpy.ndarray): individual position. |
19
|
|
|
xpb (numpy.ndarray): individuals best position. |
20
|
|
|
xb (numpy.ndarray): current best position. |
21
|
|
|
xr (numpy.ndarray): random individual. |
22
|
|
|
MP_c (float): Fickleness index value. |
23
|
|
|
MP_s (float): External irregularity index value. |
24
|
|
|
MP_p (float): Internal irregularity index value. |
25
|
|
|
F (float): scale factor. |
26
|
|
|
CR (float): crossover factor. |
27
|
|
|
task (Task): optimization task. |
28
|
|
|
rnd (mtrand.randomstate): random number generator. |
29
|
|
|
|
30
|
|
|
Returns: |
31
|
|
|
Tuple[numpy.ndarray, float]: |
32
|
|
|
1. New position of individual |
33
|
|
|
2. New positions fitness/function value |
34
|
|
|
""" |
35
|
|
|
xn = [task.repair(MP_C(x, F, CR, MP_c, rnd), rnd=rnd), task.repair(MP_S(x, xr, xb, CR, MP_s, rnd), rnd=rnd), task.repair(MP_P(x, xpb, CR, MP_p, rnd), rnd=rnd)] |
36
|
|
|
xn_f = apply_along_axis(task.eval, 1, xn) |
37
|
|
|
ib = argmin(xn_f) |
38
|
|
|
return xn[ib], xn_f[ib] |
39
|
|
|
|
40
|
|
|
def Sequential(x, xpb, xb, xr, MP_c, MP_s, MP_p, F, CR, task, rnd=rand): |
41
|
|
|
r"""Sequentialy combines all three strategies. |
42
|
|
|
|
43
|
|
|
Args: |
44
|
|
|
x (numpy.ndarray): individual position. |
45
|
|
|
xpb (numpy.ndarray): individuals best position. |
46
|
|
|
xb (numpy.ndarray): current best position. |
47
|
|
|
xr (numpy.ndarray): random individual. |
48
|
|
|
MP_c (float): Fickleness index value. |
49
|
|
|
MP_s (float): External irregularity index value. |
50
|
|
|
MP_p (float): Internal irregularity index value. |
51
|
|
|
F (float): scale factor. |
52
|
|
|
CR (float): crossover factor. |
53
|
|
|
task (Task): optimization task. |
54
|
|
|
rnd (mtrand.randomstate): random number generator. |
55
|
|
|
|
56
|
|
|
Returns: |
57
|
|
|
tuple[numpy.ndarray, float]: |
58
|
|
|
1. new position |
59
|
|
|
2. new positions function/fitness value |
60
|
|
|
""" |
61
|
|
|
xn = task.repair(MP_S(MP_P(MP_C(x, F, CR, MP_c, rnd), xpb, CR, MP_p, rnd), xr, xb, CR, MP_s, rnd), rnd=rnd) |
62
|
|
|
return xn, task.eval(xn) |
63
|
|
|
|
64
|
|
|
def Crossover(x, xpb, xb, xr, MP_c, MP_s, MP_p, F, CR, task, rnd=rand): |
65
|
|
|
r"""Create a crossover over all three strategies. |
66
|
|
|
|
67
|
|
|
Args: |
68
|
|
|
x (numpy.ndarray): individual position. |
69
|
|
|
xpb (numpy.ndarray): individuals best position. |
70
|
|
|
xb (numpy.ndarray): current best position. |
71
|
|
|
xr (numpy.ndarray): random individual. |
72
|
|
|
MP_c (float): Fickleness index value. |
73
|
|
|
MP_s (float): External irregularity index value. |
74
|
|
|
MP_p (float): Internal irregularity index value. |
75
|
|
|
F (float): scale factor. |
76
|
|
|
CR (float): crossover factor. |
77
|
|
|
task (Task): optimization task. |
78
|
|
|
rnd (mtrand.randomstate): random number generator. |
79
|
|
|
|
80
|
|
|
Returns: |
81
|
|
|
Tuple[numpy.ndarray, float]: |
82
|
|
|
1. new position |
83
|
|
|
2. new positions function/fitness value |
84
|
|
|
""" |
85
|
|
|
xns = [task.repair(MP_C(x, F, CR, MP_c, rnd), rnd=rnd), task.repair(MP_S(x, xr, xb, CR, MP_s, rnd), rnd=rnd), task.repair(MP_P(x, xpb, CR, MP_p, rnd), rnd=rnd)] |
86
|
|
|
x = asarray([xns[rnd.randint(len(xns))][i] if rnd.rand() < CR else x[i] for i in range(len(x))]) |
87
|
|
|
return x, task.eval(x) |
88
|
|
|
|
89
|
|
|
def MP_C(x, F, CR, MP, rnd=rand): |
90
|
|
|
r"""Get bew position based on fickleness. |
91
|
|
|
|
92
|
|
|
Args: |
93
|
|
|
x (numpy.ndarray): Current individuals position. |
94
|
|
|
F (float): Scale factor. |
95
|
|
|
CR (float): Crossover probability. |
96
|
|
|
MP (float): Fickleness index value |
97
|
|
|
rnd (mtrand.RandomState): Random number generator |
98
|
|
|
|
99
|
|
|
Returns: |
100
|
|
|
numpy.ndarray: New position |
101
|
|
|
""" |
102
|
|
|
if MP < 0.5: |
103
|
|
|
b = sort(rnd.choice(len(x), 2, replace=False)) |
104
|
|
|
x[b[0]:b[1]] = x[b[0]:b[1]] + F * rnd.normal(0, 1, b[1] - b[0]) |
105
|
|
|
return x |
106
|
|
|
return asarray([x[i] + F * rnd.normal(0, 1) if rnd.rand() < CR else x[i] for i in range(len(x))]) |
107
|
|
|
|
108
|
|
|
def MP_S(x, xr, xb, CR, MP, rnd=rand): |
109
|
|
|
r"""Get new position based on external irregularity. |
110
|
|
|
|
111
|
|
|
Args: |
112
|
|
|
x (numpy.ndarray): Current individuals position. |
113
|
|
|
xr (numpy.ndarray): Random individuals position. |
114
|
|
|
xb (numpy.ndarray): Global best individuals position. |
115
|
|
|
CR (float): Crossover probability. |
116
|
|
|
MP (float): External irregularity index. |
117
|
|
|
rnd (mtrand.RandomState): Random number generator. |
118
|
|
|
|
119
|
|
|
Returns: |
120
|
|
|
numpy.ndarray: New position. |
121
|
|
|
""" |
122
|
|
|
if MP < 0.25: |
123
|
|
|
b = sort(rnd.choice(len(x), 2, replace=False)) |
124
|
|
|
x[b[0]:b[1]] = xb[b[0]:b[1]] |
125
|
|
|
return x |
126
|
|
|
elif MP < 0.5: return asarray([xb[i] if rnd.rand() < CR else x[i] for i in range(len(x))]) |
127
|
|
|
elif MP < 0.75: |
128
|
|
|
b = sort(rnd.choice(len(x), 2, replace=False)) |
129
|
|
|
x[b[0]:b[1]] = xr[b[0]:b[1]] |
130
|
|
|
return x |
131
|
|
|
return asarray([xr[i] if rnd.rand() < CR else x[i] for i in range(len(x))]) |
132
|
|
|
|
133
|
|
|
def MP_P(x, xpb, CR, MP, rnd=rand): |
134
|
|
|
r"""Get new position based on internal irregularity. |
135
|
|
|
|
136
|
|
|
Args: |
137
|
|
|
x (numpy.ndarray): Current individuals position. |
138
|
|
|
xpb (numpy.ndarray): Current individuals personal best position. |
139
|
|
|
CR (float): Crossover probability. |
140
|
|
|
MP (float): Internal irregularity index value. |
141
|
|
|
rnd (mtrand.RandomState): Random number generator. |
142
|
|
|
|
143
|
|
|
Returns: |
144
|
|
|
numpy.ndarray: Current individuals new position. |
145
|
|
|
""" |
146
|
|
|
if MP < 0.5: |
147
|
|
|
b = sort(rnd.choice(len(x), 2, replace=False)) |
148
|
|
|
x[b[0]:b[1]] = xpb[b[0]:b[1]] |
149
|
|
|
return x |
150
|
|
|
return asarray([xpb[i] if rnd.rand() < CR else x[i] for i in range(len(x))]) |
151
|
|
|
|
152
|
|
|
class AnarchicSocietyOptimization(Algorithm): |
153
|
|
|
r"""Implementation of Anarchic Society Optimization algorithm. |
154
|
|
|
|
155
|
|
|
Algorithm: |
156
|
|
|
Anarchic Society Optimization algorithm |
157
|
|
|
|
158
|
|
|
Date: |
159
|
|
|
2018 |
160
|
|
|
|
161
|
|
|
Authors: |
162
|
|
|
Klemen Berkovič |
163
|
|
|
|
164
|
|
|
License: |
165
|
|
|
MIT |
166
|
|
|
|
167
|
|
|
Reference paper: |
168
|
|
|
Ahmadi-Javid, Amir. "Anarchic Society Optimization: A human-inspired method." Evolutionary Computation (CEC), 2011 IEEE Congress on. IEEE, 2011. |
169
|
|
|
|
170
|
|
|
Attributes: |
171
|
|
|
Name (list of str): List of stings representing name of algorithm. |
172
|
|
|
alpha (List[float]): Factor for fickleness index function :math:`\in [0, 1]`. |
173
|
|
|
gamma (List[float]): Factor for external irregularity index function :math:`\in [0, \infty)`. |
174
|
|
|
theta (List[float]): Factor for internal irregularity index function :math:`\in [0, \infty)`. |
175
|
|
|
d (Callable[[float, float], float]): function that takes two arguments that are function values and calcs the distance between them. |
176
|
|
|
dn (Callable[[numpy.ndarray, numpy.ndarray], float]): function that takes two arguments that are points in function landscape and calcs the distance between them. |
177
|
|
|
nl (float): Normalized range for neighborhood search :math:`\in (0, 1]`. |
178
|
|
|
F (float): Mutation parameter. |
179
|
|
|
CR (float): Crossover parameter :math:`\in [0, 1]`. |
180
|
|
|
Combination (Callable[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray, float, float, float, float, float, float, Task, mtrand.RandomState]): Function for combining individuals to get new position/individual. |
181
|
|
|
|
182
|
|
|
See Also: |
183
|
|
|
* :class:`NiaPy.algorithms.Algorithm` |
184
|
|
|
""" |
185
|
|
|
Name = ['AnarchicSocietyOptimization', 'ASO'] |
186
|
|
|
|
187
|
|
|
@staticmethod |
188
|
|
|
def algorithmInfo(): |
189
|
|
|
r"""Get basic information about the algorithm. |
190
|
|
|
|
191
|
|
|
Returns: |
192
|
|
|
str: Basic information. |
193
|
|
|
|
194
|
|
|
See Also: |
195
|
|
|
:func:`NiaPy.algorithms.algorithm.Algorithm.algorithmInfo` |
196
|
|
|
""" |
197
|
|
|
return r"""Ahmadi-Javid, Amir. "Anarchic Society Optimization: A human-inspired method." Evolutionary Computation (CEC), 2011 IEEE Congress on. IEEE, 2011.""" |
198
|
|
|
|
199
|
|
|
@staticmethod |
200
|
|
|
def typeParameters(): |
201
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
202
|
|
|
|
203
|
|
|
Returns: |
204
|
|
|
Dict[str, Callable]: |
205
|
|
|
* alpha (Callable): TODO |
206
|
|
|
* gamma (Callable): TODO |
207
|
|
|
* theta (Callable): TODO |
208
|
|
|
* nl (Callable): TODO |
209
|
|
|
* F (Callable[[Union[float, int]], bool]): TODO |
210
|
|
|
* CR (Callable[[Union[float, int]], bool]): TODO |
211
|
|
|
|
212
|
|
|
See Also: |
213
|
|
|
* :func:`NiaPy.algorithms.Algorithm.typeParameters` |
214
|
|
|
""" |
215
|
|
|
d = Algorithm.typeParameters() |
216
|
|
|
d.update({ |
217
|
|
|
'alpha': lambda x: True, |
218
|
|
|
'gamma': lambda x: True, |
219
|
|
|
'theta': lambda x: True, |
220
|
|
|
'nl': lambda x: True, |
221
|
|
|
'F': lambda x: isinstance(x, (int, float)) and x > 0, |
222
|
|
|
'CR': lambda x: isinstance(x, float) and 0 <= x <= 1 |
223
|
|
|
}) |
224
|
|
|
return d |
225
|
|
|
|
226
|
|
|
def setParameters(self, NP=43, alpha=(1, 0.83), gamma=(1.17, 0.56), theta=(0.932, 0.832), d=euclidean, dn=euclidean, nl=1, F=1.2, CR=0.25, Combination=Elitism, **ukwargs): |
227
|
|
|
r"""Set the parameters for the algorith. |
228
|
|
|
|
229
|
|
|
Arguments: |
230
|
|
|
alpha (Optional[List[float]]): Factor for fickleness index function :math:`\in [0, 1]`. |
231
|
|
|
gamma (Optional[List[float]]): Factor for external irregularity index function :math:`\in [0, \infty)`. |
232
|
|
|
theta (Optional[List[float]]): Factor for internal irregularity index function :math:`\in [0, \infty)`. |
233
|
|
|
d (Optional[Callable[[float, float], float]]): function that takes two arguments that are function values and calcs the distance between them. |
234
|
|
|
dn (Optional[Callable[[numpy.ndarray, numpy.ndarray], float]]): function that takes two arguments that are points in function landscape and calcs the distance between them. |
235
|
|
|
nl (Optional[float]): Normalized range for neighborhood search :math:`\in (0, 1]`. |
236
|
|
|
F (Optional[float]): Mutation parameter. |
237
|
|
|
CR (Optional[float]): Crossover parameter :math:`\in [0, 1]`. |
238
|
|
|
Combination (Optional[Callable[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray, float, float, float, float, float, float, Task, mtrand.RandomState]]): Function for combining individuals to get new position/individual. |
239
|
|
|
|
240
|
|
|
See Also: |
241
|
|
|
* :func:`NiaPy.algorithms.Algorithm.setParameters` |
242
|
|
|
* Combination methods: |
243
|
|
|
* :func:`NiaPy.algorithms.other.Elitism` |
244
|
|
|
* :func:`NiaPy.algorithms.other.Crossover` |
245
|
|
|
* :func:`NiaPy.algorithms.other.Sequential` |
246
|
|
|
""" |
247
|
|
|
Algorithm.setParameters(self, NP=NP, **ukwargs) |
248
|
|
|
self.alpha, self.gamma, self.theta, self.d, self.dn, self.nl, self.F, self.CR, self.Combination = alpha, gamma, theta, d, dn, nl, F, CR, Combination |
249
|
|
|
|
250
|
|
|
def init(self, task): |
251
|
|
|
r"""Initialize dynamic parameters of algorithm. |
252
|
|
|
|
253
|
|
|
Args: |
254
|
|
|
task (Task): Optimization task. |
255
|
|
|
|
256
|
|
|
Returns: |
257
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray] |
258
|
|
|
1. Array of `self.alpha` propagated values |
259
|
|
|
2. Array of `self.gamma` propagated values |
260
|
|
|
3. Array of `self.theta` propagated values |
261
|
|
|
""" |
262
|
|
|
return fullArray(self.alpha, self.NP), fullArray(self.gamma, self.NP), fullArray(self.theta, self.NP) |
263
|
|
|
|
264
|
|
|
def FI(self, x_f, xpb_f, xb_f, alpha): |
265
|
|
|
r"""Get fickleness index. |
266
|
|
|
|
267
|
|
|
Args: |
268
|
|
|
x_f (float): Individuals fitness/function value. |
269
|
|
|
xpb_f (float): Individuals personal best fitness/function value. |
270
|
|
|
xb_f (float): Current best found individuals fitness/function value. |
271
|
|
|
alpha (float): TODO. |
272
|
|
|
|
273
|
|
|
Returns: |
274
|
|
|
float: Fickleness index. |
275
|
|
|
""" |
276
|
|
|
return 1 - alpha * xb_f / x_f - (1 - alpha) * xpb_f / x_f |
277
|
|
|
|
278
|
|
|
def EI(self, x_f, xnb_f, gamma): |
279
|
|
|
r"""Get external irregularity index. |
280
|
|
|
|
281
|
|
|
Args: |
282
|
|
|
x_f (float): Individuals fitness/function value. |
283
|
|
|
xnb_f (float): Individuals new fitness/function value. |
284
|
|
|
gamma (float): TODO. |
285
|
|
|
|
286
|
|
|
Returns: |
287
|
|
|
float: External irregularity index. |
288
|
|
|
""" |
289
|
|
|
return 1 - exp(-gamma * self.d(x_f, xnb_f)) |
290
|
|
|
|
291
|
|
|
def II(self, x_f, xpb_f, theta): |
292
|
|
|
r"""Get internal irregularity index. |
293
|
|
|
|
294
|
|
|
Args: |
295
|
|
|
x_f (float): Individuals fitness/function value. |
296
|
|
|
xpb_f (float): Individuals personal best fitness/function value. |
297
|
|
|
theta (float): TODO. |
298
|
|
|
|
299
|
|
|
Returns: |
300
|
|
|
float: Internal irregularity index |
301
|
|
|
""" |
302
|
|
|
return 1 - exp(-theta * self.d(x_f, xpb_f)) |
303
|
|
|
|
304
|
|
|
def getBestNeighbors(self, i, X, X_f, rs): |
305
|
|
|
r"""Get neighbors of individual. |
306
|
|
|
|
307
|
|
|
Mesurment of distance for neighborhud is defined with `self.nl`. |
308
|
|
|
Function for calculating distances is define with `self.dn`. |
309
|
|
|
|
310
|
|
|
Args: |
311
|
|
|
i (int): Index of individual for hum we are looking for neighbours. |
312
|
|
|
X (numpy.ndarray): Current population. |
313
|
|
|
X_f (numpy.ndarray[float]): Current population fitness/function values. |
314
|
|
|
rs (numpy.ndarray[float]): Distance between individuals. |
315
|
|
|
|
316
|
|
|
Returns: |
317
|
|
|
numpy.ndarray[int]: Indexes that represent individuals closest to `i`-th individual. |
318
|
|
|
""" |
319
|
|
|
nn = asarray([self.dn(X[i], X[j]) / rs for j in range(len(X))]) |
320
|
|
|
return argmin(X_f[where(nn <= self.nl)]) |
321
|
|
|
|
322
|
|
|
def uBestAndPBest(self, X, X_f, Xpb, Xpb_f): |
323
|
|
|
r"""Update personal best solution of all individuals in population. |
324
|
|
|
|
325
|
|
|
Args: |
326
|
|
|
X (numpy.ndarray): Current population. |
327
|
|
|
X_f (numpy.ndarray[float]): Current population fitness/function values. |
328
|
|
|
Xpb (numpy.ndarray): Current population best positions. |
329
|
|
|
Xpb_f (numpy.ndarray[float]): Current populations best positions fitness/function values. |
330
|
|
|
|
331
|
|
|
Returns: |
332
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], numpy.ndarray, float]: |
333
|
|
|
1. New personal best positions for current population. |
334
|
|
|
2. New personal best positions function/fitness values for current population. |
335
|
|
|
3. New best individual. |
336
|
|
|
4. New best individual fitness/function value. |
337
|
|
|
""" |
338
|
|
|
ix_pb = where(X_f < Xpb_f) |
339
|
|
|
Xpb[ix_pb], Xpb_f[ix_pb] = X[ix_pb], X_f[ix_pb] |
340
|
|
|
return Xpb, Xpb_f |
341
|
|
|
|
342
|
|
|
def initPopulation(self, task): |
343
|
|
|
r"""Initialize first population and additional arguments. |
344
|
|
|
|
345
|
|
|
Args: |
346
|
|
|
task (Task): Optimization task |
347
|
|
|
|
348
|
|
|
Returns: |
349
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, dict]: |
350
|
|
|
1. Initialized population |
351
|
|
|
2. Initialized population fitness/function values |
352
|
|
|
3. Dict[str, Any]: |
353
|
|
|
* Xpb (numpy.ndarray): Initialized populations best positions. |
354
|
|
|
* Xpb_f (numpy.ndarray): Initialized populations best positions function/fitness values. |
355
|
|
|
* alpha (numpy.ndarray): |
356
|
|
|
* gamma (numpy.ndarray): |
357
|
|
|
* theta (numpy.ndarray): |
358
|
|
|
* rs (float): Distance of search space. |
359
|
|
|
|
360
|
|
|
See Also: |
361
|
|
|
* :func:`NiaPy.algorithms.algorithm.Algorithm.initPopulation` |
362
|
|
|
* :func:`NiaPy.algorithms.other.aso.AnarchicSocietyOptimization.init` |
363
|
|
|
""" |
364
|
|
|
X, X_f, d = Algorithm.initPopulation(self, task) |
365
|
|
|
alpha, gamma, theta = self.init(task) |
366
|
|
|
Xpb, Xpb_f = self.uBestAndPBest(X, X_f, full([self.NP, task.D], 0.0), full(self.NP, task.optType.value * inf)) |
367
|
|
|
d.update({'Xpb': Xpb, 'Xpb_f': Xpb_f, 'alpha': alpha, 'gamma': gamma, 'theta': theta, 'rs': self.d(task.Upper, task.Lower)}) |
368
|
|
|
return X, X_f, d |
369
|
|
|
|
370
|
|
|
def runIteration(self, task, X, X_f, xb, fxb, Xpb, Xpb_f, alpha, gamma, theta, rs, **dparams): |
371
|
|
|
r"""Core function of AnarchicSocietyOptimization algorithm. |
372
|
|
|
|
373
|
|
|
Args: |
374
|
|
|
task (Task): Optimization task. |
375
|
|
|
X (numpy.ndarray): Current populations positions. |
376
|
|
|
X_f (numpy.ndarray): Current populations function/fitness values. |
377
|
|
|
xb (numpy.ndarray): Current global best individuals position. |
378
|
|
|
fxb (float): Current global best individual function/fitness value. |
379
|
|
|
Xpb (numpy.ndarray): Current populations best positions. |
380
|
|
|
Xpb_f (numpy.ndarray): Current population best positions function/fitness values. |
381
|
|
|
alpha (numpy.ndarray): TODO. |
382
|
|
|
gamma (numpy.ndarray): |
383
|
|
|
theta (numpy.ndarray): |
384
|
|
|
**dparams: Additional arguments. |
385
|
|
|
|
386
|
|
|
Returns: |
387
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, dict]: |
388
|
|
|
1. Initialized population |
389
|
|
|
2. Initialized population fitness/function values |
390
|
|
|
3. New global best solution |
391
|
|
|
4. New global best solutions fitness/objective value |
392
|
|
|
5. Dict[str, Union[float, int, numpy.ndarray]: |
393
|
|
|
* Xpb (numpy.ndarray): Initialized populations best positions. |
394
|
|
|
* Xpb_f (numpy.ndarray): Initialized populations best positions function/fitness values. |
395
|
|
|
* alpha (numpy.ndarray): |
396
|
|
|
* gamma (numpy.ndarray): |
397
|
|
|
* theta (numpy.ndarray): |
398
|
|
|
* rs (float): Distance of search space. |
399
|
|
|
""" |
400
|
|
|
Xin = [self.getBestNeighbors(i, X, X_f, rs) for i in range(len(X))] |
401
|
|
|
MP_c, MP_s, MP_p = asarray([self.FI(X_f[i], Xpb_f[i], fxb, alpha[i]) for i in range(len(X))]), asarray([self.EI(X_f[i], X_f[Xin[i]], gamma[i]) for i in range(len(X))]), asarray([self.II(X_f[i], Xpb_f[i], theta[i]) for i in range(len(X))]) |
402
|
|
|
Xtmp = asarray([self.Combination(X[i], Xpb[i], xb, X[self.randint(len(X), skip=[i])], MP_c[i], MP_s[i], MP_p[i], self.F, self.CR, task, self.Rand) for i in range(len(X))]) |
403
|
|
|
X, X_f = asarray([Xtmp[i][0] for i in range(len(X))]), asarray([Xtmp[i][1] for i in range(len(X))]) |
404
|
|
|
Xpb, Xpb_f = self.uBestAndPBest(X, X_f, Xpb, Xpb_f) |
405
|
|
|
xb, fxb = self.getBest(X, X_f, xb, fxb) |
406
|
|
|
return X, X_f, xb, fxb, {'Xpb': Xpb, 'Xpb_f': Xpb_f, 'alpha': alpha, 'gamma': gamma, 'theta': theta, 'rs': rs} |
407
|
|
|
|
408
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
409
|
|
|
|