1
|
|
|
# encoding=utf8 |
2
|
|
|
import logging |
3
|
|
|
import math |
4
|
|
|
|
5
|
|
|
from numpy import random as rand, argmin, argmax, mean, cos, asarray, append, sin, isfinite |
6
|
|
|
from scipy.spatial.distance import euclidean |
7
|
|
|
|
8
|
|
|
from NiaPy.algorithms.algorithm import Algorithm, Individual, defaultIndividualInit |
9
|
|
|
from NiaPy.util.utility import objects2array |
10
|
|
|
|
11
|
|
|
__all__ = ['DifferentialEvolution', 'DynNpDifferentialEvolution', 'AgingNpDifferentialEvolution', 'CrowdingDifferentialEvolution', 'MultiStrategyDifferentialEvolution', 'DynNpMultiStrategyDifferentialEvolution', 'AgingNpMultiMutationDifferentialEvolution', 'AgingIndividual', 'CrossRand1', 'CrossBest2', 'CrossBest1', 'CrossBest2', 'CrossCurr2Rand1', 'CrossCurr2Best1', 'multiMutations'] |
12
|
|
|
|
13
|
|
|
logging.basicConfig() |
14
|
|
|
logger = logging.getLogger('NiaPy.algorithms.basic') |
15
|
|
|
logger.setLevel('INFO') |
16
|
|
|
|
17
|
|
View Code Duplication |
def CrossRand1(pop, ic, x_b, f, cr, rnd=rand, *args): |
|
|
|
|
18
|
|
|
r"""Mutation strategy with crossover. |
19
|
|
|
|
20
|
|
|
Mutation strategy uses three different random individuals from population to perform mutation. |
21
|
|
|
|
22
|
|
|
Mutation: |
23
|
|
|
Name: DE/rand/1 |
24
|
|
|
|
25
|
|
|
:math:`\mathbf{x}_{r_1, G} + F \cdot (\mathbf{x}_{r_2, G} - \mathbf{x}_{r_3, G}` |
26
|
|
|
where :math:`r_1, r_2, r_3` are random indexes representing current population individuals. |
27
|
|
|
|
28
|
|
|
Crossover: |
29
|
|
|
Name: Binomial crossover |
30
|
|
|
|
31
|
|
|
:math:`\mathbf{x}_{i, G+1} = \begin{cases} \mathbf{u}_{i, G+1}, & \text{if $f(\mathbf{u}_{i, G+1}) \leq f(\mathbf{x}_{i, G})$}, \\ \mathbf{x}_{i, G}, & \text{otherwise}. \end{cases}` |
32
|
|
|
|
33
|
|
|
Args: |
34
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
35
|
|
|
ic (int): Index of individual being mutated. |
36
|
|
|
x_b (Individual): Current global best individual. |
37
|
|
|
f (float): Scale factor. |
38
|
|
|
cr (float): Crossover probability. |
39
|
|
|
rnd (mtrand.RandomState): Random generator. |
40
|
|
|
args (list): Additional arguments. |
41
|
|
|
|
42
|
|
|
Returns: |
43
|
|
|
numpy.ndarray: Mutated and mixed individual. |
44
|
|
|
""" |
45
|
|
|
j = rnd.randint(len(pop[ic])) |
46
|
|
|
p = [1 / (len(pop) - 1.0) if i != ic else 0 for i in range(len(pop))] if len(pop) > 3 else None |
47
|
|
|
r = rnd.choice(len(pop), 3, replace=not len(pop) >= 3, p=p) |
48
|
|
|
x = [pop[r[0]][i] + f * (pop[r[1]][i] - pop[r[2]][i]) if rnd.rand() < cr or i == j else pop[ic][i] for i in range(len(pop[ic]))] |
49
|
|
|
return asarray(x) |
50
|
|
|
|
51
|
|
View Code Duplication |
def CrossBest1(pop, ic, x_b, f, cr, rnd=rand, *args): |
|
|
|
|
52
|
|
|
r"""Mutation strategy with crossover. |
53
|
|
|
|
54
|
|
|
Mutation strategy uses two different random individuals from population and global best individual. |
55
|
|
|
|
56
|
|
|
Mutation: |
57
|
|
|
Name: de/best/1 |
58
|
|
|
|
59
|
|
|
:math:`\mathbf{v}_{i, G} = \mathbf{x}_{best, G} + F \cdot (\mathbf{x}_{r_1, G} - \mathbf{x}_{r_2, G})` |
60
|
|
|
where :math:`r_1, r_2` are random indexes representing current population individuals. |
61
|
|
|
|
62
|
|
|
Crossover: |
63
|
|
|
Name: Binomial crossover |
64
|
|
|
|
65
|
|
|
:math:`\mathbf{x}_{i, G+1} = \begin{cases} \mathbf{u}_{i, G+1}, & \text{if $f(\mathbf{u}_{i, G+1}) \leq f(\mathbf{x}_{i, G})$}, \\ \mathbf{x}_{i, G}, & \text{otherwise}. \end{cases}` |
66
|
|
|
|
67
|
|
|
args: |
68
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
69
|
|
|
ic (int): Index of individual being mutated. |
70
|
|
|
x_b (Individual): Current global best individual. |
71
|
|
|
f (float): Scale factor. |
72
|
|
|
cr (float): Crossover probability. |
73
|
|
|
rnd (mtrand.RandomState): Random generator. |
74
|
|
|
args (list): Additional arguments. |
75
|
|
|
|
76
|
|
|
returns: |
77
|
|
|
numpy.ndarray: Mutated and mixed individual. |
78
|
|
|
""" |
79
|
|
|
j = rnd.randint(len(pop[ic])) |
80
|
|
|
p = [1 / (len(pop) - 1.0) if i != ic else 0 for i in range(len(pop))] if len(pop) > 2 else None |
81
|
|
|
r = rnd.choice(len(pop), 2, replace=not len(pop) >= 2, p=p) |
82
|
|
|
x = [x_b[i] + f * (pop[r[0]][i] - pop[r[1]][i]) if rnd.rand() < cr or i == j else pop[ic][i] for i in range(len(pop[ic]))] |
83
|
|
|
return asarray(x) |
84
|
|
|
|
85
|
|
View Code Duplication |
def CrossRand2(pop, ic, x_b, f, cr, rnd=rand, *args): |
|
|
|
|
86
|
|
|
r"""Mutation strategy with crossover. |
87
|
|
|
|
88
|
|
|
Mutation strategy uses five different random individuals from population. |
89
|
|
|
|
90
|
|
|
Mutation: |
91
|
|
|
Name: de/best/1 |
92
|
|
|
|
93
|
|
|
:math:`\mathbf{v}_{i, G} = \mathbf{x}_{r_1, G} + F \cdot (\mathbf{x}_{r_2, G} - \mathbf{x}_{r_3, G}) + F \cdot (\mathbf{x}_{r_4, G} - \mathbf{x}_{r_5, G})` |
94
|
|
|
where :math:`r_1, r_2, r_3, r_4, r_5` are random indexes representing current population individuals. |
95
|
|
|
|
96
|
|
|
Crossover: |
97
|
|
|
Name: Binomial crossover |
98
|
|
|
|
99
|
|
|
:math:`\mathbf{x}_{i, G+1} = \begin{cases} \mathbf{u}_{i, G+1}, & \text{if $f(\mathbf{u}_{i, G+1}) \leq f(\mathbf{x}_{i, G})$}, \\ \mathbf{x}_{i, G}, & \text{otherwise}. \end{cases}` |
100
|
|
|
|
101
|
|
|
Args: |
102
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
103
|
|
|
ic (int): Index of individual being mutated. |
104
|
|
|
x_b (Individual): Current global best individual. |
105
|
|
|
f (float): Scale factor. |
106
|
|
|
cr (float): Crossover probability. |
107
|
|
|
rnd (mtrand.RandomState): Random generator. |
108
|
|
|
args (list): Additional arguments. |
109
|
|
|
|
110
|
|
|
Returns: |
111
|
|
|
numpy.ndarray: mutated and mixed individual. |
112
|
|
|
""" |
113
|
|
|
j = rnd.randint(len(pop[ic])) |
114
|
|
|
p = [1 / (len(pop) - 1.0) if i != ic else 0 for i in range(len(pop))] if len(pop) > 5 else None |
115
|
|
|
r = rnd.choice(len(pop), 5, replace=not len(pop) >= 5, p=p) |
116
|
|
|
x = [pop[r[0]][i] + f * (pop[r[1]][i] - pop[r[2]][i]) + f * (pop[r[3]][i] - pop[r[4]][i]) if rnd.rand() < cr or i == j else pop[ic][i] for i in range(len(pop[ic]))] |
117
|
|
|
return asarray(x) |
118
|
|
|
|
119
|
|
View Code Duplication |
def CrossBest2(pop, ic, x_b, f, cr, rnd=rand, *args): |
|
|
|
|
120
|
|
|
r"""Mutation strategy with crossover. |
121
|
|
|
|
122
|
|
|
Mutation: |
123
|
|
|
Name: de/best/2 |
124
|
|
|
|
125
|
|
|
:math:`\mathbf{v}_{i, G} = \mathbf{x}_{best, G} + F \cdot (\mathbf{x}_{r_1, G} - \mathbf{x}_{r_2, G}) + F \cdot (\mathbf{x}_{r_3, G} - \mathbf{x}_{r_4, G})` |
126
|
|
|
where :math:`r_1, r_2, r_3, r_4` are random indexes representing current population individuals. |
127
|
|
|
|
128
|
|
|
Crossover: |
129
|
|
|
Name: Binomial crossover |
130
|
|
|
|
131
|
|
|
:math:`\mathbf{x}_{i, G+1} = \begin{cases} \mathbf{u}_{i, G+1}, & \text{if $f(\mathbf{u}_{i, G+1}) \leq f(\mathbf{x}_{i, G})$}, \\ \mathbf{x}_{i, G}, & \text{otherwise}. \end{cases}` |
132
|
|
|
|
133
|
|
|
Args: |
134
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
135
|
|
|
ic (int): Index of individual being mutated. |
136
|
|
|
x_b (Individual): Current global best individual. |
137
|
|
|
f (float): Scale factor. |
138
|
|
|
cr (float): Crossover probability. |
139
|
|
|
rnd (mtrand.RandomState): Random generator. |
140
|
|
|
args (list): Additional arguments. |
141
|
|
|
|
142
|
|
|
Returns: |
143
|
|
|
numpy.ndarray: mutated and mixed individual. |
144
|
|
|
""" |
145
|
|
|
j = rnd.randint(len(pop[ic])) |
146
|
|
|
p = [1 / (len(pop) - 1.0) if i != ic else 0 for i in range(len(pop))] if len(pop) > 4 else None |
147
|
|
|
r = rnd.choice(len(pop), 4, replace=not len(pop) >= 4, p=p) |
148
|
|
|
x = [x_b[i] + f * (pop[r[0]][i] - pop[r[1]][i]) + f * (pop[r[2]][i] - pop[r[3]][i]) if rnd.rand() < cr or i == j else pop[ic][i] for i in range(len(pop[ic]))] |
149
|
|
|
return asarray(x) |
150
|
|
|
|
151
|
|
View Code Duplication |
def CrossCurr2Rand1(pop, ic, x_b, f, cr, rnd=rand, *args): |
|
|
|
|
152
|
|
|
r"""Mutation strategy with crossover. |
153
|
|
|
|
154
|
|
|
Mutation: |
155
|
|
|
Name: de/curr2rand/1 |
156
|
|
|
|
157
|
|
|
:math:`\mathbf{v}_{i, G} = \mathbf{x}_{i, G} + F \cdot (\mathbf{x}_{r_1, G} - \mathbf{x}_{r_2, G}) + F \cdot (\mathbf{x}_{r_3, G} - \mathbf{x}_{r_4, G})` |
158
|
|
|
where :math:`r_1, r_2, r_3, r_4` are random indexes representing current population individuals |
159
|
|
|
|
160
|
|
|
Crossover: |
161
|
|
|
Name: Binomial crossover |
162
|
|
|
|
163
|
|
|
:math:`\mathbf{x}_{i, G+1} = \begin{cases} \mathbf{u}_{i, G+1}, & \text{if $f(\mathbf{u}_{i, G+1}) \leq f(\mathbf{x}_{i, G})$}, \\ \mathbf{x}_{i, G}, & \text{otherwise}. \end{cases}` |
164
|
|
|
|
165
|
|
|
Args: |
166
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
167
|
|
|
ic (int): Index of individual being mutated. |
168
|
|
|
x_b (Individual): Current global best individual. |
169
|
|
|
f (float): Scale factor. |
170
|
|
|
cr (float): Crossover probability. |
171
|
|
|
rnd (mtrand.RandomState): Random generator. |
172
|
|
|
args (list): Additional arguments. |
173
|
|
|
|
174
|
|
|
Returns: |
175
|
|
|
numpy.ndarray: mutated and mixed individual. |
176
|
|
|
""" |
177
|
|
|
j = rnd.randint(len(pop[ic])) |
178
|
|
|
p = [1 / (len(pop) - 1.0) if i != ic else 0 for i in range(len(pop))] if len(pop) > 4 else None |
179
|
|
|
r = rnd.choice(len(pop), 4, replace=not len(pop) >= 4, p=p) |
180
|
|
|
x = [pop[ic][i] + f * (pop[r[0]][i] - pop[r[1]][i]) + f * (pop[r[2]][i] - pop[r[3]][i]) if rnd.rand() < cr or i == j else pop[ic][i] for i in range(len(pop[ic]))] |
181
|
|
|
return asarray(x) |
182
|
|
|
|
183
|
|
|
def CrossCurr2Best1(pop, ic, x_b, f, cr, rnd=rand, **kwargs): |
184
|
|
|
r"""Mutation strategy with crossover. |
185
|
|
|
|
186
|
|
|
Mutation: |
187
|
|
|
Name: de/curr-to-best/1 |
188
|
|
|
|
189
|
|
|
:math:`\mathbf{v}_{i, G} = \mathbf{x}_{i, G} + F \cdot (\mathbf{x}_{r_1, G} - \mathbf{x}_{r_2, G}) + F \cdot (\mathbf{x}_{r_3, G} - \mathbf{x}_{r_4, G})` |
190
|
|
|
where :math:`r_1, r_2, r_3, r_4` are random indexes representing current population individuals |
191
|
|
|
|
192
|
|
|
Crossover: |
193
|
|
|
Name: Binomial crossover |
194
|
|
|
|
195
|
|
|
:math:`\mathbf{x}_{i, G+1} = \begin{cases} \mathbf{u}_{i, G+1}, & \text{if $f(\mathbf{u}_{i, G+1}) \leq f(\mathbf{x}_{i, G})$}, \\ \mathbf{x}_{i, G}, & \text{otherwise}. \end{cases}` |
196
|
|
|
|
197
|
|
|
Args: |
198
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
199
|
|
|
ic (int): Index of individual being mutated. |
200
|
|
|
x_b (Individual): Current global best individual. |
201
|
|
|
f (float): Scale factor. |
202
|
|
|
cr (float): Crossover probability. |
203
|
|
|
rnd (mtrand.RandomState): Random generator. |
204
|
|
|
args (list): Additional arguments. |
205
|
|
|
|
206
|
|
|
Returns: |
207
|
|
|
numpy.ndarray: mutated and mixed individual. |
208
|
|
|
""" |
209
|
|
|
j = rnd.randint(len(pop[ic])) |
210
|
|
|
p = [1 / (len(pop) - 1.0) if i != ic else 0 for i in range(len(pop))] if len(pop) > 3 else None |
211
|
|
|
r = rnd.choice(len(pop), 3, replace=not len(pop) >= 3, p=p) |
212
|
|
|
x = [pop[ic][i] + f * (x_b[i] - pop[r[0]][i]) + f * (pop[r[1]][i] - pop[r[2]][i]) if rnd.rand() < cr or i == j else pop[ic][i] for i in range(len(pop[ic]))] |
213
|
|
|
return asarray(x) |
214
|
|
|
|
215
|
|
|
class DifferentialEvolution(Algorithm): |
216
|
|
|
r"""Implementation of Differential evolution algorithm. |
217
|
|
|
|
218
|
|
|
Algorithm: |
219
|
|
|
Differential evolution algorithm |
220
|
|
|
|
221
|
|
|
Date: |
222
|
|
|
2018 |
223
|
|
|
|
224
|
|
|
Author: |
225
|
|
|
Uros Mlakar and Klemen Berkovič |
226
|
|
|
|
227
|
|
|
License: |
228
|
|
|
MIT |
229
|
|
|
|
230
|
|
|
Reference paper: |
231
|
|
|
Storn, Rainer, and Kenneth Price. "Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces." Journal of global optimization 11.4 (1997): 341-359. |
232
|
|
|
|
233
|
|
|
Attributes: |
234
|
|
|
Name (List[str]): List of string of names for algorithm. |
235
|
|
|
F (float): Scale factor. |
236
|
|
|
CR (float): Crossover probability. |
237
|
|
|
CrossMutt (Callable[numpy.ndarray, int, numpy.ndarray, float, float, mtrand.RandomState, Dict[str, Any]]): crossover and mutation strategy. |
238
|
|
|
|
239
|
|
|
See Also: |
240
|
|
|
* :class:`NiaPy.algorithms.Algorithm` |
241
|
|
|
""" |
242
|
|
|
Name = ['DifferentialEvolution', 'DE'] |
243
|
|
|
|
244
|
|
|
@staticmethod |
245
|
|
|
def algorithmInfo(): |
246
|
|
|
r"""Get basic information of algorithm. |
247
|
|
|
|
248
|
|
|
Returns: |
249
|
|
|
str: Basic information of algorithm. |
250
|
|
|
|
251
|
|
|
See Also: |
252
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
253
|
|
|
""" |
254
|
|
|
return r"""Storn, Rainer, and Kenneth Price. "Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces." Journal of global optimization 11.4 (1997): 341-359.""" |
255
|
|
|
|
256
|
|
View Code Duplication |
@staticmethod |
|
|
|
|
257
|
|
|
def typeParameters(): |
258
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
259
|
|
|
|
260
|
|
|
Returns: |
261
|
|
|
Dict[str, Callable]: |
262
|
|
|
* F (Callable[[Union[float, int]], bool]): Check for correct value of parameter. |
263
|
|
|
* CR (Callable[[float], bool]): Check for correct value of parameter. |
264
|
|
|
|
265
|
|
|
See Also: |
266
|
|
|
* :func:`NiaPy.algorithms.Algorithm.typeParameters` |
267
|
|
|
""" |
268
|
|
|
d = Algorithm.typeParameters() |
269
|
|
|
d.update({ |
270
|
|
|
'F': lambda x: isinstance(x, (float, int)) and 0 < x <= 2, |
271
|
|
|
'CR': lambda x: isinstance(x, float) and 0 <= x <= 1 |
272
|
|
|
}) |
273
|
|
|
return d |
274
|
|
|
|
275
|
|
|
def setParameters(self, NP=50, F=1, CR=0.8, CrossMutt=CrossRand1, **ukwargs): |
276
|
|
|
r"""Set the algorithm parameters. |
277
|
|
|
|
278
|
|
|
Arguments: |
279
|
|
|
NP (Optional[int]): Population size. |
280
|
|
|
F (Optional[float]): Scaling factor. |
281
|
|
|
CR (Optional[float]): Crossover rate. |
282
|
|
|
CrossMutt (Optional[Callable[[numpy.ndarray, int, numpy.ndarray, float, float, mtrand.RandomState, list], numpy.ndarray]]): Crossover and mutation strategy. |
283
|
|
|
ukwargs (Dict[str, Any]): Additional arguments. |
284
|
|
|
|
285
|
|
|
See Also: |
286
|
|
|
* :func:`NiaPy.algorithms.Algorithm.setParameters` |
287
|
|
|
""" |
288
|
|
|
Algorithm.setParameters(self, NP=NP, InitPopFunc=ukwargs.pop('InitPopFunc', defaultIndividualInit), itype=ukwargs.pop('itype', Individual), **ukwargs) |
289
|
|
|
self.F, self.CR, self.CrossMutt = F, CR, CrossMutt |
290
|
|
|
|
291
|
|
|
def getParameters(self): |
292
|
|
|
r"""Get parameters values of the algorithm. |
293
|
|
|
|
294
|
|
|
Returns: |
295
|
|
|
Dict[str, Any]: TODO |
296
|
|
|
|
297
|
|
|
See Also: |
298
|
|
|
* :func:`NiaPy.algorithms.Algorithm.getParameters` |
299
|
|
|
""" |
300
|
|
|
d = Algorithm.getParameters(self) |
301
|
|
|
d.update({ |
302
|
|
|
'F': self.F, |
303
|
|
|
'CR': self.CR, |
304
|
|
|
'CrossMutt': self.CrossMutt |
305
|
|
|
}) |
306
|
|
|
return d |
307
|
|
|
|
308
|
|
|
def evolve(self, pop, xb, task, **kwargs): |
309
|
|
|
r"""Evolve population. |
310
|
|
|
|
311
|
|
|
Args: |
312
|
|
|
pop (numpy.ndarray): Current population. |
313
|
|
|
xb (Individual): Current best individual. |
314
|
|
|
task (Task): Optimization task. |
315
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
316
|
|
|
|
317
|
|
|
Returns: |
318
|
|
|
numpy.ndarray: New evolved populations. |
319
|
|
|
""" |
320
|
|
|
return objects2array([self.itype(x=self.CrossMutt(pop, i, xb, self.F, self.CR, self.Rand), task=task, rnd=self.Rand, e=True) for i in range(len(pop))]) |
321
|
|
|
|
322
|
|
|
def selection(self, pop, npop, xb, fxb, task, **kwargs): |
323
|
|
|
r"""Operator for selection. |
324
|
|
|
|
325
|
|
|
Args: |
326
|
|
|
pop (numpy.ndarray): Current population. |
327
|
|
|
npop (numpy.ndarray): New Population. |
328
|
|
|
xb (numpy.ndarray): Current global best solution. |
329
|
|
|
fxb (float): Current global best solutions fitness/objective value. |
330
|
|
|
task (Task): Optimization task. |
331
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
332
|
|
|
|
333
|
|
|
Returns: |
334
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, float]: |
335
|
|
|
1. New selected individuals. |
336
|
|
|
2. New global best solution. |
337
|
|
|
3. New global best solutions fitness/objective value. |
338
|
|
|
""" |
339
|
|
|
arr = objects2array([e if e.f < pop[i].f else pop[i] for i, e in enumerate(npop)]) |
340
|
|
|
xb, fxb = self.getBest(arr, asarray([e.f for e in arr]), xb, fxb) |
341
|
|
|
return arr, xb, fxb |
342
|
|
|
|
343
|
|
|
def postSelection(self, pop, task, xb, fxb, **kwargs): |
344
|
|
|
r"""Apply additional operation after selection. |
345
|
|
|
|
346
|
|
|
Args: |
347
|
|
|
pop (numpy.ndarray): Current population. |
348
|
|
|
task (Task): Optimization task. |
349
|
|
|
xb (numpy.ndarray): Global best solution. |
350
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
351
|
|
|
|
352
|
|
|
Returns: |
353
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, float]: |
354
|
|
|
1. New population. |
355
|
|
|
2. New global best solution. |
356
|
|
|
3. New global best solutions fitness/objective value. |
357
|
|
|
""" |
358
|
|
|
return pop, xb, fxb |
359
|
|
|
|
360
|
|
|
def runIteration(self, task, pop, fpop, xb, fxb, **dparams): |
361
|
|
|
r"""Core function of Differential Evolution algorithm. |
362
|
|
|
|
363
|
|
|
Args: |
364
|
|
|
task (Task): Optimization task. |
365
|
|
|
pop (numpy.ndarray): Current population. |
366
|
|
|
fpop (numpy.ndarray): Current populations fitness/function values. |
367
|
|
|
xb (numpy.ndarray): Current best individual. |
368
|
|
|
fxb (float): Current best individual function/fitness value. |
369
|
|
|
**dparams (dict): Additional arguments. |
370
|
|
|
|
371
|
|
|
Returns: |
372
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, Dict[str, Any]]: |
373
|
|
|
1. New population. |
374
|
|
|
2. New population fitness/function values. |
375
|
|
|
3. New global best solution. |
376
|
|
|
4. New global best solutions fitness/objective value. |
377
|
|
|
5. Additional arguments. |
378
|
|
|
|
379
|
|
|
See Also: |
380
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.evolve` |
381
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.selection` |
382
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.postSelection` |
383
|
|
|
""" |
384
|
|
|
npop = self.evolve(pop, xb, task) |
385
|
|
|
pop, xb, fxb = self.selection(pop, npop, xb, fxb, task=task) |
386
|
|
|
pop, xb, fxb = self.postSelection(pop, task, xb, fxb) |
387
|
|
|
fpop = asarray([x.f for x in pop]) |
388
|
|
|
xb, fxb = self.getBest(pop, fpop, xb, fxb) |
389
|
|
|
return pop, fpop, xb, fxb, {} |
390
|
|
|
|
391
|
|
|
class CrowdingDifferentialEvolution(DifferentialEvolution): |
392
|
|
|
r"""Implementation of Differential evolution algorithm with multiple mutation strateys. |
393
|
|
|
|
394
|
|
|
Algorithm: |
395
|
|
|
Implementation of Differential evolution algorithm with multiple mutation strateys |
396
|
|
|
|
397
|
|
|
Date: |
398
|
|
|
2018 |
399
|
|
|
|
400
|
|
|
Author: |
401
|
|
|
Klemen Berkovič |
402
|
|
|
|
403
|
|
|
License: |
404
|
|
|
MIT |
405
|
|
|
|
406
|
|
|
Attributes: |
407
|
|
|
Name (List[str]): List of strings representing algorithm name. |
408
|
|
|
CrowPop (float): Proportion of range for cowding. |
409
|
|
|
|
410
|
|
|
See Also: |
411
|
|
|
* :class:`NiaPy.algorithms.basic.DifferentialEvolution` |
412
|
|
|
""" |
413
|
|
|
Name = ['CrowdingDifferentialEvolution', 'CDE'] |
414
|
|
|
|
415
|
|
|
@staticmethod |
416
|
|
|
def algorithmInfo(): |
417
|
|
|
r"""Get basic information of algorithm. |
418
|
|
|
|
419
|
|
|
Returns: |
420
|
|
|
str: Basic information of algorithm. |
421
|
|
|
|
422
|
|
|
See Also: |
423
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
424
|
|
|
""" |
425
|
|
|
return r"""No New""" |
426
|
|
|
|
427
|
|
|
def setParameters(self, CrowPop=0.1, **ukwargs): |
428
|
|
|
r"""Set core parameters of algorithm. |
429
|
|
|
|
430
|
|
|
Args: |
431
|
|
|
CrowPop (Optional[float]): Crowding distance. |
432
|
|
|
**ukwargs: Additional arguments. |
433
|
|
|
|
434
|
|
|
See Also: |
435
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.setParameters` |
436
|
|
|
""" |
437
|
|
|
DifferentialEvolution.setParameters(self, **ukwargs) |
438
|
|
|
self.CrowPop = CrowPop |
439
|
|
|
|
440
|
|
|
def selection(self, pop, npop, xb, fxb, task, **kwargs): |
441
|
|
|
r"""Operator for selection of individuals. |
442
|
|
|
|
443
|
|
|
Args: |
444
|
|
|
pop (numpy.ndarray): Current population. |
445
|
|
|
npop (numpy.ndarray): New population. |
446
|
|
|
xb (numpy.ndarray): Current global best solution. |
447
|
|
|
fxb (float): Current global best solutions fitness/objective value. |
448
|
|
|
task (Task): Optimization task. |
449
|
|
|
kwargs (Dict[str, Any]): Additional arguments. |
450
|
|
|
|
451
|
|
|
Returns: |
452
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, float]: |
453
|
|
|
1. New population. |
454
|
|
|
2. New global best solution. |
455
|
|
|
3. New global best solutions fitness/objective value. |
456
|
|
|
""" |
457
|
|
|
P = [] |
458
|
|
|
for e in npop: |
459
|
|
|
i = argmin([euclidean(e, f) for f in pop]) |
460
|
|
|
P.append(pop[i] if pop[i].f < e.f else e) |
461
|
|
|
return asarray(P), xb, fxb |
462
|
|
|
|
463
|
|
|
class DynNpDifferentialEvolution(DifferentialEvolution): |
464
|
|
|
r"""Implementation of Dynamic poulation size Differential evolution algorithm. |
465
|
|
|
|
466
|
|
|
Algorithm: |
467
|
|
|
Dynamic poulation size Differential evolution algorithm |
468
|
|
|
|
469
|
|
|
Date: |
470
|
|
|
2018 |
471
|
|
|
|
472
|
|
|
Author: |
473
|
|
|
Klemen Berkovič |
474
|
|
|
|
475
|
|
|
License: |
476
|
|
|
MIT |
477
|
|
|
|
478
|
|
|
Attributes: |
479
|
|
|
Name (List[str]): List of strings representing algorithm names. |
480
|
|
|
pmax (int): Number of population reductions. |
481
|
|
|
rp (int): Small non-negative number which is added to value of generations. |
482
|
|
|
|
483
|
|
|
See Also: |
484
|
|
|
* :class:`NiaPy.algorithms.basic.DifferentialEvolution` |
485
|
|
|
""" |
486
|
|
|
Name = ['DynNpDifferentialEvolution', 'dynNpDE'] |
487
|
|
|
|
488
|
|
|
@staticmethod |
489
|
|
|
def algorithmInfo(): |
490
|
|
|
r"""Get basic information of algorithm. |
491
|
|
|
|
492
|
|
|
Returns: |
493
|
|
|
str: Basic information of algorithm. |
494
|
|
|
|
495
|
|
|
See Also: |
496
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
497
|
|
|
""" |
498
|
|
|
return r"""No info""" |
499
|
|
|
|
500
|
|
|
@staticmethod |
501
|
|
|
def typeParameters(): |
502
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
503
|
|
|
|
504
|
|
|
Returns: |
505
|
|
|
Dict[str, Callable]: |
506
|
|
|
* rp (Callable[[Union[float, int]], bool]) |
507
|
|
|
* pmax (Callable[[int], bool]) |
508
|
|
|
|
509
|
|
|
See Also: |
510
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.typeParameters` |
511
|
|
|
""" |
512
|
|
|
r = DifferentialEvolution.typeParameters() |
513
|
|
|
r['rp'] = lambda x: isinstance(x, (float, int)) and x > 0 |
514
|
|
|
r['pmax'] = lambda x: isinstance(x, int) and x > 0 |
515
|
|
|
return r |
516
|
|
|
|
517
|
|
|
def setParameters(self, pmax=50, rp=3, **ukwargs): |
518
|
|
|
r"""Set the algorithm parameters. |
519
|
|
|
|
520
|
|
|
Arguments: |
521
|
|
|
pmax (Optional[int]): umber of population reductions. |
522
|
|
|
rp (Optional[int]): Small non-negative number which is added to value of generations. |
523
|
|
|
|
524
|
|
|
See Also: |
525
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.setParameters` |
526
|
|
|
""" |
527
|
|
|
DifferentialEvolution.setParameters(self, **ukwargs) |
528
|
|
|
self.pmax, self.rp = pmax, rp |
529
|
|
|
|
530
|
|
|
def postSelection(self, pop, task, xb, fxb, **kwargs): |
531
|
|
|
r"""Post selection operator. |
532
|
|
|
|
533
|
|
|
In this algorithm the post selection operator decrements the population at specific iterations/generations. |
534
|
|
|
|
535
|
|
|
Args: |
536
|
|
|
pop (numpy.ndarray): Current population. |
537
|
|
|
task (Task): Optimization task. |
538
|
|
|
kwargs (Dict[str, Any]): Additional arguments. |
539
|
|
|
|
540
|
|
|
Returns: |
541
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, float]: |
542
|
|
|
1. Changed current population. |
543
|
|
|
2. New global best solution. |
544
|
|
|
3. New global best solutions fitness/objective value. |
545
|
|
|
""" |
546
|
|
|
Gr = task.nFES // (self.pmax * len(pop)) + self.rp |
547
|
|
|
nNP = len(pop) // 2 |
548
|
|
|
if task.Iters == Gr and len(pop) > 3: pop = objects2array([pop[i] if pop[i].f < pop[i + nNP].f else pop[i + nNP] for i in range(nNP)]) |
549
|
|
|
return pop, xb, fxb |
550
|
|
|
|
551
|
|
|
def proportional(Lt_min, Lt_max, mu, x_f, avg, **args): |
552
|
|
|
r"""Proportional calculation of age of individual. |
553
|
|
|
|
554
|
|
|
Args: |
555
|
|
|
Lt_min (int): Minimal life time. |
556
|
|
|
Lt_max (int): Maximal life time. |
557
|
|
|
mu (float): Median of life time. |
558
|
|
|
x_f (float): Individuals function/fitness value. |
559
|
|
|
avg (float): Average fitness/function value of current population. |
560
|
|
|
args (list): Additional arguments. |
561
|
|
|
|
562
|
|
|
Returns: |
563
|
|
|
int: Age of individual. |
564
|
|
|
""" |
565
|
|
|
proportional_result = Lt_max if math.isinf(avg) else Lt_min + mu * avg / x_f |
566
|
|
|
return min(proportional_result, Lt_max) |
567
|
|
|
|
568
|
|
|
def linear(Lt_min, mu, x_f, x_gw, x_gb, **args): |
569
|
|
|
r"""Linear calculation of age of individual. |
570
|
|
|
|
571
|
|
|
Args: |
572
|
|
|
Lt_min (int): Minimal life time. |
573
|
|
|
Lt_max (int): Maximal life time. |
574
|
|
|
mu (float): Median of life time. |
575
|
|
|
x_f (float): Individual function/fitness value. |
576
|
|
|
avg (float): Average fitness/function value. |
577
|
|
|
x_gw (float): Global worst fitness/function value. |
578
|
|
|
x_gb (float): Global best fitness/function value. |
579
|
|
|
args (list): Additional arguments. |
580
|
|
|
|
581
|
|
|
Returns: |
582
|
|
|
int: Age of individual. |
583
|
|
|
""" |
584
|
|
|
return Lt_min + 2 * mu * (x_f - x_gw) / (x_gb - x_gw) |
585
|
|
|
|
586
|
|
|
def bilinear(Lt_min, Lt_max, mu, x_f, avg, x_gw, x_gb, **args): |
587
|
|
|
r"""Bilinear calculation of age of individual. |
588
|
|
|
|
589
|
|
|
Args: |
590
|
|
|
Lt_min (int): Minimal life time. |
591
|
|
|
Lt_max (int): Maximal life time. |
592
|
|
|
mu (float): Median of life time. |
593
|
|
|
x_f (float): Individual function/fitness value. |
594
|
|
|
avg (float): Average fitness/function value. |
595
|
|
|
x_gw (float): Global worst fitness/function value. |
596
|
|
|
x_gb (float): Global best fitness/function value. |
597
|
|
|
args (list): Additional arguments. |
598
|
|
|
|
599
|
|
|
Returns: |
600
|
|
|
int: Age of individual. |
601
|
|
|
""" |
602
|
|
|
if avg < x_f: return Lt_min + mu * (x_f - x_gw) / (x_gb - x_gw) |
603
|
|
|
return 0.5 * (Lt_min + Lt_max) + mu * (x_f - avg) / (x_gb - avg) |
604
|
|
|
|
605
|
|
|
class AgingIndividual(Individual): |
606
|
|
|
r"""Individual with aging. |
607
|
|
|
|
608
|
|
|
Attributes: |
609
|
|
|
age (int): Age of individual. |
610
|
|
|
|
611
|
|
|
See Also: |
612
|
|
|
* :class:`NiaPy.algorithms.Individual` |
613
|
|
|
""" |
614
|
|
|
age = 0 |
615
|
|
|
|
616
|
|
|
def __init__(self, **kwargs): |
617
|
|
|
r"""Init Aging Individual. |
618
|
|
|
|
619
|
|
|
Args: |
620
|
|
|
**kwargs (Dict[str, Any]): Additional arguments sent to parent. |
621
|
|
|
|
622
|
|
|
See Also: |
623
|
|
|
* :func:`NiaPy.algorithms.Individual.__init__` |
624
|
|
|
""" |
625
|
|
|
Individual.__init__(self, **kwargs) |
626
|
|
|
self.age = 0 |
627
|
|
|
|
628
|
|
|
class AgingNpDifferentialEvolution(DifferentialEvolution): |
629
|
|
|
r"""Implementation of Differential evolution algorithm with aging individuals. |
630
|
|
|
|
631
|
|
|
Algorithm: |
632
|
|
|
Differential evolution algorithm with dynamic population size that is defined by the quality of population |
633
|
|
|
|
634
|
|
|
Date: |
635
|
|
|
2018 |
636
|
|
|
|
637
|
|
|
Author: |
638
|
|
|
Klemen Berkovič |
639
|
|
|
|
640
|
|
|
License: |
641
|
|
|
MIT |
642
|
|
|
|
643
|
|
|
Attributes: |
644
|
|
|
Name (List[str]): list of strings representing algorithm names. |
645
|
|
|
Lt_min (int): Minimal age of individual. |
646
|
|
|
Lt_max (int): Maximal age of individual. |
647
|
|
|
delta_np (float): Proportion of how many individuals shall die. |
648
|
|
|
omega (float): Acceptance rate for individuals to die. |
649
|
|
|
mu (int): Mean of individual max and min age. |
650
|
|
|
age (Callable[[int, int, float, float, float, float, float], int]): Function for calculation of age for individual. |
651
|
|
|
|
652
|
|
|
See Also: |
653
|
|
|
* :class:`NiaPy.algorithms.basic.DifferentialEvolution` |
654
|
|
|
""" |
655
|
|
|
Name = ['AgingNpDifferentialEvolution', 'ANpDE'] |
656
|
|
|
|
657
|
|
|
@staticmethod |
658
|
|
|
def algorithmInfo(): |
659
|
|
|
r"""Get basic information of algorithm. |
660
|
|
|
|
661
|
|
|
Returns: |
662
|
|
|
str: Basic information of algorithm. |
663
|
|
|
|
664
|
|
|
See Also: |
665
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
666
|
|
|
""" |
667
|
|
|
return r"""No info""" |
668
|
|
|
|
669
|
|
|
@staticmethod |
670
|
|
|
def typeParameters(): |
671
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
672
|
|
|
|
673
|
|
|
Returns: |
674
|
|
|
Dict[str, Callable]: |
675
|
|
|
* Lt_min (Callable[[int], bool]) |
676
|
|
|
* Lt_max (Callable[[int], bool]) |
677
|
|
|
* delta_np (Callable[[float], bool]) |
678
|
|
|
* omega (Callable[[float], bool]) |
679
|
|
|
|
680
|
|
|
See Also: |
681
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.typeParameters` |
682
|
|
|
""" |
683
|
|
|
r = DifferentialEvolution.typeParameters() |
684
|
|
|
r.update({ |
685
|
|
|
'Lt_min': lambda x: isinstance(x, int) and x >= 0, |
686
|
|
|
'Lt_max': lambda x: isinstance(x, int) and x >= 0, |
687
|
|
|
'delta_np': lambda x: isinstance(x, float) and 0 <= x <= 1, |
688
|
|
|
'omega': lambda x: isinstance(x, float) and 1 >= x >= 0 |
689
|
|
|
}) |
690
|
|
|
return r |
691
|
|
|
|
692
|
|
|
def setParameters(self, Lt_min=0, Lt_max=12, delta_np=0.3, omega=0.3, age=proportional, CrossMutt=CrossBest1, **ukwargs): |
693
|
|
|
r"""Set the algorithm parameters. |
694
|
|
|
|
695
|
|
|
Arguments: |
696
|
|
|
Lt_min (Optional[int]): Minimum life time. |
697
|
|
|
Lt_max (Optional[int]): Maximum life time. |
698
|
|
|
age (Optional[Callable[[int, int, float, float, float, float, float], int]]): Function for calculation of age for individual. |
699
|
|
|
|
700
|
|
|
See Also: |
701
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.setParameters` |
702
|
|
|
""" |
703
|
|
|
DifferentialEvolution.setParameters(self, itype=AgingIndividual, **ukwargs) |
704
|
|
|
self.Lt_min, self.Lt_max, self.age, self.delta_np, self.omega = Lt_min, Lt_max, age, delta_np, omega |
705
|
|
|
self.mu = abs(self.Lt_max - self.Lt_min) / 2 |
706
|
|
|
|
707
|
|
|
def deltaPopE(self, t): |
708
|
|
|
r"""Calculate how many individuals are going to dye. |
709
|
|
|
|
710
|
|
|
Args: |
711
|
|
|
t (int): Number of generations made by the algorithm. |
712
|
|
|
|
713
|
|
|
Returns: |
714
|
|
|
int: Number of individuals to dye. |
715
|
|
|
""" |
716
|
|
|
return int(self.delta_np * abs(sin(t))) |
717
|
|
|
|
718
|
|
|
def deltaPopC(self, t): |
719
|
|
|
r"""Calculate how many individuals are going to be created. |
720
|
|
|
|
721
|
|
|
Args: |
722
|
|
|
t (int): Number of generations made by the algorithm. |
723
|
|
|
|
724
|
|
|
Returns: |
725
|
|
|
int: Number of individuals to be born. |
726
|
|
|
""" |
727
|
|
|
return int(self.delta_np * abs(cos(t))) |
728
|
|
|
|
729
|
|
|
def aging(self, task, pop): |
730
|
|
|
r"""Apply aging to individuals. |
731
|
|
|
|
732
|
|
|
Args: |
733
|
|
|
task (Task): Optimization task. |
734
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
735
|
|
|
|
736
|
|
|
Returns: |
737
|
|
|
numpy.ndarray[Individual]: New population. |
738
|
|
|
""" |
739
|
|
|
fpop = asarray([x.f for x in pop]) |
740
|
|
|
x_b, x_w = pop[argmin(fpop)], pop[argmax(fpop)] |
741
|
|
|
avg, npop = mean(fpop[isfinite(fpop)]), [] |
742
|
|
|
for x in pop: |
743
|
|
|
x.age += 1 |
744
|
|
|
Lt = round(self.age(Lt_min=self.Lt_min, Lt_max=self.Lt_max, mu=self.mu, x_f=x.f, avg=avg, x_gw=x_w.f, x_gb=x_b.f)) |
745
|
|
|
if x.age <= Lt: npop.append(x) |
746
|
|
|
if len(npop) == 0: npop = objects2array([self.itype(task=task, rnd=self.Rand, e=True) for _ in range(self.NP)]) |
747
|
|
|
return npop |
748
|
|
|
|
749
|
|
|
def popIncrement(self, pop, task): |
750
|
|
|
r"""Increment population. |
751
|
|
|
|
752
|
|
|
Args: |
753
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
754
|
|
|
task (Task): Optimization task. |
755
|
|
|
|
756
|
|
|
Returns: |
757
|
|
|
numpy.ndarray[Individual]: Increased population. |
758
|
|
|
""" |
759
|
|
|
deltapop = int(round(max(1, self.NP * self.deltaPopE(task.Iters)))) |
760
|
|
|
return objects2array([self.itype(task=task, rnd=self.Rand, e=True) for _ in range(deltapop)]) |
761
|
|
|
|
762
|
|
|
def popDecrement(self, pop, task): |
763
|
|
|
r"""Decrement population. |
764
|
|
|
|
765
|
|
|
Args: |
766
|
|
|
pop (numpy.ndarray): Current population. |
767
|
|
|
task (Task): Optimization task. |
768
|
|
|
|
769
|
|
|
Returns: |
770
|
|
|
numpy.ndarray[Individual]: Decreased population. |
771
|
|
|
""" |
772
|
|
|
deltapop = int(round(max(1, self.NP * self.deltaPopC(task.Iters)))) |
773
|
|
|
if len(pop) - deltapop <= 0: return pop |
774
|
|
|
ni = self.Rand.choice(len(pop), deltapop, replace=False) |
775
|
|
|
npop = [] |
776
|
|
|
for i, e in enumerate(pop): |
777
|
|
|
if i not in ni: npop.append(e) |
778
|
|
|
elif self.rand() >= self.omega: npop.append(e) |
779
|
|
|
return objects2array(npop) |
780
|
|
|
|
781
|
|
|
def selection(self, pop, npop, xb, fxb, task, **kwargs): |
782
|
|
|
r"""Select operator for individuals with aging. |
783
|
|
|
|
784
|
|
|
Args: |
785
|
|
|
pop (numpy.ndarray): Current population. |
786
|
|
|
npop (numpy.ndarray): New population. |
787
|
|
|
xb (numpy.ndarray): Current global best solution. |
788
|
|
|
fxb (float): Current global best solutions fitness/objective value. |
789
|
|
|
task (Task): Optimization task. |
790
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
791
|
|
|
|
792
|
|
|
Returns: |
793
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, float]: |
794
|
|
|
1. New population of individuals. |
795
|
|
|
2. New global best solution. |
796
|
|
|
3. New global best solutions fitness/objective value. |
797
|
|
|
""" |
798
|
|
|
npop, xb, fxb = DifferentialEvolution.selection(self, pop, npop, xb, fxb, task) |
799
|
|
|
npop = append(npop, self.popIncrement(pop, task)) |
800
|
|
|
xb, fxb = self.getBest(npop, asarray([e.f for e in npop]), xb, fxb) |
801
|
|
|
pop = self.aging(task, npop) |
802
|
|
|
return pop, xb, fxb |
803
|
|
|
|
804
|
|
|
def postSelection(self, pop, task, xb, fxb, **kwargs): |
805
|
|
|
r"""Post selection operator. |
806
|
|
|
|
807
|
|
|
Args: |
808
|
|
|
pop (numpy.ndarray): Current population. |
809
|
|
|
task (Task): Optimization task. |
810
|
|
|
xb (Individual): Global best individual. |
811
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
812
|
|
|
|
813
|
|
|
Returns: |
814
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, float]: |
815
|
|
|
1. New population. |
816
|
|
|
2. New global best solution |
817
|
|
|
3. New global best solutions fitness/objective value |
818
|
|
|
""" |
819
|
|
|
return self.popDecrement(pop, task) if len(pop) > self.NP else pop, xb, fxb |
820
|
|
|
|
821
|
|
|
def multiMutations(pop, i, xb, F, CR, rnd, task, itype, strategies, **kwargs): |
822
|
|
|
r"""Mutation strategy that takes more than one strategy and applys them to individual. |
823
|
|
|
|
824
|
|
|
Args: |
825
|
|
|
pop (numpy.ndarray[Individual]): Current population. |
826
|
|
|
i (int): Index of current individual. |
827
|
|
|
xb (Individual): Current best individual. |
828
|
|
|
F (float): Scale factor. |
829
|
|
|
CR (float): Crossover probability. |
830
|
|
|
rnd (mtrand.RandomState): Random generator. |
831
|
|
|
task (Task): Optimization task. |
832
|
|
|
IndividualType (Individual): Individual type used in algorithm. |
833
|
|
|
strategies (Iterable[Callable[[numpy.ndarray[Individual], int, Individual, float, float, mtrand.RandomState], numpy.ndarray[Individual]]]): List of mutation strategies. |
834
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
835
|
|
|
|
836
|
|
|
Returns: |
837
|
|
|
Individual: Best individual from applyed mutations strategies. |
838
|
|
|
""" |
839
|
|
|
L = [itype(x=strategy(pop, i, xb, F, CR, rnd=rnd), task=task, e=True, rnd=rnd) for strategy in strategies] |
840
|
|
|
return L[argmin([x.f for x in L])] |
841
|
|
|
|
842
|
|
|
class MultiStrategyDifferentialEvolution(DifferentialEvolution): |
843
|
|
|
r"""Implementation of Differential evolution algorithm with multiple mutation strateys. |
844
|
|
|
|
845
|
|
|
Algorithm: |
846
|
|
|
Implementation of Differential evolution algorithm with multiple mutation strateys |
847
|
|
|
|
848
|
|
|
Date: |
849
|
|
|
2018 |
850
|
|
|
|
851
|
|
|
Author: |
852
|
|
|
Klemen Berkovič |
853
|
|
|
|
854
|
|
|
License: |
855
|
|
|
MIT |
856
|
|
|
|
857
|
|
|
Attributes: |
858
|
|
|
Name (List[str]): List of strings representing algorithm names. |
859
|
|
|
strategies (Iterable[Callable[[numpy.ndarray[Individual], int, Individual, float, float, mtrand.RandomState], numpy.ndarray[Individual]]]): List of mutation strategies. |
860
|
|
|
CrossMutt (Callable[[numpy.ndarray[Individual], int, Individual, float, float, Task, Individual, Iterable[Callable[[numpy.ndarray, int, numpy.ndarray, float, float, mtrand.RandomState, Dict[str, Any]], Individual]]], Individual]): Multi crossover and mutation combiner function. |
861
|
|
|
|
862
|
|
|
See Also: |
863
|
|
|
* :class:`NiaPy.algorithms.basic.DifferentialEvolution` |
864
|
|
|
""" |
865
|
|
|
Name = ['MultiStrategyDifferentialEvolution', 'MsDE'] |
866
|
|
|
|
867
|
|
|
@staticmethod |
868
|
|
|
def algorithmInfo(): |
869
|
|
|
r"""Get basic information of algorithm. |
870
|
|
|
|
871
|
|
|
Returns: |
872
|
|
|
str: Basic information of algorithm. |
873
|
|
|
|
874
|
|
|
See Also: |
875
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
876
|
|
|
""" |
877
|
|
|
return r"""No info""" |
878
|
|
|
|
879
|
|
|
@staticmethod |
880
|
|
|
def typeParameters(): |
881
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
882
|
|
|
|
883
|
|
|
Returns: |
884
|
|
|
Dict[str, Callable]: Testing functions for parameters. |
885
|
|
|
|
886
|
|
|
See Also: |
887
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.typeParameters` |
888
|
|
|
""" |
889
|
|
|
r = DifferentialEvolution.typeParameters() |
890
|
|
|
r.pop('CrossMutt', None) |
891
|
|
|
r.update({'strategies': lambda x: callable(x)}) |
892
|
|
|
return r |
893
|
|
|
|
894
|
|
|
def setParameters(self, strategies=(CrossRand1, CrossBest1, CrossCurr2Best1, CrossRand2), **ukwargs): |
895
|
|
|
r"""Set the arguments of the algorithm. |
896
|
|
|
|
897
|
|
|
Arguments: |
898
|
|
|
strategies (Optional[Iterable[Callable[[numpy.ndarray[Individual], int, Individual, float, float, mtrand.RandomState], numpy.ndarray[Individual]]]]): List of mutation strategyis. |
899
|
|
|
CrossMutt (Optional[Callable[[numpy.ndarray[Individual], int, Individual, float, float, Task, Individual, Iterable[Callable[[numpy.ndarray, int, numpy.ndarray, float, float, mtrand.RandomState, Dict[str, Any]], Individual]]], Individual]]): Multi crossover and mutation combiner function. |
900
|
|
|
|
901
|
|
|
See Also: |
902
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.setParameters` |
903
|
|
|
""" |
904
|
|
|
DifferentialEvolution.setParameters(self, CrossMutt=multiMutations, **ukwargs) |
905
|
|
|
self.strategies = strategies |
906
|
|
|
|
907
|
|
|
def getParameters(self): |
908
|
|
|
r"""Get parameters values of the algorithm. |
909
|
|
|
|
910
|
|
|
Returns: |
911
|
|
|
Dict[str, Any]: TODO. |
912
|
|
|
|
913
|
|
|
See Also: |
914
|
|
|
* :func:`NiaPy.algorithms.basic.DifferentialEvolution.getParameters` |
915
|
|
|
""" |
916
|
|
|
d = DifferentialEvolution.getParameters(self) |
917
|
|
|
d.update({'strategies': self.strategies}) |
918
|
|
|
return d |
919
|
|
|
|
920
|
|
View Code Duplication |
def evolve(self, pop, xb, task, **kwargs): |
|
|
|
|
921
|
|
|
r"""Evolve population with the help multiple mutation strategies. |
922
|
|
|
|
923
|
|
|
Args: |
924
|
|
|
pop (numpy.ndarray): Current population. |
925
|
|
|
xb (numpy.ndarray): Current best individual. |
926
|
|
|
task (Task): Optimization task. |
927
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
928
|
|
|
|
929
|
|
|
Returns: |
930
|
|
|
numpy.ndarray: New population of individuals. |
931
|
|
|
""" |
932
|
|
|
return objects2array([self.CrossMutt(pop, i, xb, self.F, self.CR, self.Rand, task, self.itype, self.strategies) for i in range(len(pop))]) |
933
|
|
|
|
934
|
|
|
class DynNpMultiStrategyDifferentialEvolution(MultiStrategyDifferentialEvolution, DynNpDifferentialEvolution): |
935
|
|
|
r"""Implementation of Dynamic population size Differential evolution algorithm with dynamic population size that is defined by the quality of population. |
936
|
|
|
|
937
|
|
|
Algorithm: |
938
|
|
|
Dynamic population size Differential evolution algorithm with dynamic population size that is defined by the quality of population |
939
|
|
|
|
940
|
|
|
Date: |
941
|
|
|
2018 |
942
|
|
|
|
943
|
|
|
Author: |
944
|
|
|
Klemen Berkovič |
945
|
|
|
|
946
|
|
|
License: |
947
|
|
|
MIT |
948
|
|
|
|
949
|
|
|
Attributes: |
950
|
|
|
Name (List[str]): List of strings representing algorithm name. |
951
|
|
|
|
952
|
|
|
See Also: |
953
|
|
|
* :class:`NiaPy.algorithms.basic.MultiStrategyDifferentialEvolution` |
954
|
|
|
* :class:`NiaPy.algorithms.basic.DynNpDifferentialEvolution` |
955
|
|
|
""" |
956
|
|
|
Name = ['DynNpMultiStrategyDifferentialEvolution', 'dynNpMsDE'] |
957
|
|
|
|
958
|
|
|
@staticmethod |
959
|
|
|
def algorithmInfo(): |
960
|
|
|
r"""Get basic information of algorithm. |
961
|
|
|
|
962
|
|
|
Returns: |
963
|
|
|
str: Basic information of algorithm. |
964
|
|
|
|
965
|
|
|
See Also: |
966
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
967
|
|
|
""" |
968
|
|
|
return r"""No info""" |
969
|
|
|
|
970
|
|
|
@staticmethod |
971
|
|
|
def typeParameters(): |
972
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
973
|
|
|
|
974
|
|
|
Returns: |
975
|
|
|
Dict[str, Callable]: |
976
|
|
|
* rp (Callable[[Union[float, int]], bool]): TODO |
977
|
|
|
* pmax (Callable[[int], bool]): TODO |
978
|
|
|
|
979
|
|
|
See Also: |
980
|
|
|
* :func:`NiaPy.algorithms.basic.MultiStrategyDifferentialEvolution.typeParameters` |
981
|
|
|
""" |
982
|
|
|
r = MultiStrategyDifferentialEvolution.typeParameters() |
983
|
|
|
r['rp'] = lambda x: isinstance(x, (float, int)) and x > 0 |
984
|
|
|
r['pmax'] = lambda x: isinstance(x, int) and x > 0 |
985
|
|
|
return r |
986
|
|
|
|
987
|
|
|
def setParameters(self, **ukwargs): |
988
|
|
|
r"""Set the arguments of the algorithm. |
989
|
|
|
|
990
|
|
|
Args: |
991
|
|
|
ukwargs (Dict[str, Any]): Additional arguments. |
992
|
|
|
|
993
|
|
|
See Also: |
994
|
|
|
* :func:`NiaPy.algorithms.basic.MultiStrategyDifferentialEvolution.setParameters` |
995
|
|
|
* :func:`NiaPy.algorithms.basic.DynNpDifferentialEvolution.setParameters` |
996
|
|
|
""" |
997
|
|
|
DynNpDifferentialEvolution.setParameters(self, **ukwargs) |
998
|
|
|
MultiStrategyDifferentialEvolution.setParameters(self, **ukwargs) |
999
|
|
|
|
1000
|
|
|
def evolve(self, pop, xb, task, **kwargs): |
1001
|
|
|
r"""Evolve the current population. |
1002
|
|
|
|
1003
|
|
|
Args: |
1004
|
|
|
pop (numpy.ndarray): Current population. |
1005
|
|
|
xb (numpy.ndarray): Global best solution. |
1006
|
|
|
task (Task): Optimization task. |
1007
|
|
|
**kwargs (dict): Additional arguments. |
1008
|
|
|
|
1009
|
|
|
Returns: |
1010
|
|
|
numpy.ndarray: Evolved new population. |
1011
|
|
|
""" |
1012
|
|
|
return MultiStrategyDifferentialEvolution.evolve(self, pop, xb, task, **kwargs) |
1013
|
|
|
|
1014
|
|
|
def postSelection(self, pop, task, xb, fxb, **kwargs): |
1015
|
|
|
r"""Post selection operator. |
1016
|
|
|
|
1017
|
|
|
Args: |
1018
|
|
|
pop (numpy.ndarray): Current population. |
1019
|
|
|
task (Task): Optimization task. |
1020
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
1021
|
|
|
|
1022
|
|
|
Returns: |
1023
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, float]: |
1024
|
|
|
1. New population. |
1025
|
|
|
2. New global best solution. |
1026
|
|
|
3. New global best solutions fitness/objective value. |
1027
|
|
|
|
1028
|
|
|
See Also: |
1029
|
|
|
* :func:`NiaPy.algorithms.basic.DynNpDifferentialEvolution.postSelection` |
1030
|
|
|
""" |
1031
|
|
|
return DynNpDifferentialEvolution.postSelection(self, pop, task, xb, fxb) |
1032
|
|
|
|
1033
|
|
|
class AgingNpMultiMutationDifferentialEvolution(AgingNpDifferentialEvolution, MultiStrategyDifferentialEvolution): |
1034
|
|
|
r"""Implementation of Differential evolution algorithm with aging individuals. |
1035
|
|
|
|
1036
|
|
|
Algorithm: |
1037
|
|
|
Differential evolution algorithm with dynamic population size that is defined by the quality of population |
1038
|
|
|
|
1039
|
|
|
Date: |
1040
|
|
|
2018 |
1041
|
|
|
|
1042
|
|
|
Author: |
1043
|
|
|
Klemen Berkovič |
1044
|
|
|
|
1045
|
|
|
License: |
1046
|
|
|
MIT |
1047
|
|
|
|
1048
|
|
|
Attributes: |
1049
|
|
|
Name (List[str]): List of strings representing algorithm names |
1050
|
|
|
|
1051
|
|
|
See Also: |
1052
|
|
|
* :class:`NiaPy.algorithms.basic.AgingNpDifferentialEvolution` |
1053
|
|
|
* :class:`NiaPy.algorithms.basic.MultiStrategyDifferentialEvolution` |
1054
|
|
|
""" |
1055
|
|
|
Name = ['AgingNpMultiMutationDifferentialEvolution', 'ANpMSDE'] |
1056
|
|
|
|
1057
|
|
|
@staticmethod |
1058
|
|
|
def algorithmInfo(): |
1059
|
|
|
r"""Get basic information of algorithm. |
1060
|
|
|
|
1061
|
|
|
Returns: |
1062
|
|
|
str: Basic information of algorithm. |
1063
|
|
|
|
1064
|
|
|
See Also: |
1065
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
1066
|
|
|
""" |
1067
|
|
|
return r"""No info""" |
1068
|
|
|
|
1069
|
|
|
@staticmethod |
1070
|
|
|
def typeParameters(): |
1071
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
1072
|
|
|
|
1073
|
|
|
Returns: |
1074
|
|
|
Dict[str, Callable]: Mappings form parameter names to test functions. |
1075
|
|
|
|
1076
|
|
|
See Also: |
1077
|
|
|
* :func:`NiaPy.algorithms.basic.MultiStrategyDifferentialEvolution.typeParameters` |
1078
|
|
|
* :func:`NiaPy.algorithms.basic.AgingNpDifferentialEvolution.typeParameters` |
1079
|
|
|
""" |
1080
|
|
|
d = AgingNpDifferentialEvolution.typeParameters() |
1081
|
|
|
d.update(MultiStrategyDifferentialEvolution.typeParameters()) |
1082
|
|
|
return d |
1083
|
|
|
|
1084
|
|
|
def setParameters(self, **ukwargs): |
1085
|
|
|
r"""Set core parameter arguments. |
1086
|
|
|
|
1087
|
|
|
Args: |
1088
|
|
|
**ukwargs (Dict[str, Any]): Additional arguments. |
1089
|
|
|
|
1090
|
|
|
See Also: |
1091
|
|
|
* :func:`NiaPy.algorithms.basic.AgingNpDifferentialEvolution.setParameters` |
1092
|
|
|
* :func:`NiaPy.algorithms.basic.MultiStrategyDifferentialEvolution.setParameters` |
1093
|
|
|
""" |
1094
|
|
|
AgingNpDifferentialEvolution.setParameters(self, **ukwargs) |
1095
|
|
|
MultiStrategyDifferentialEvolution.setParameters(self, stratgeys=(CrossRand1, CrossBest1, CrossCurr2Rand1, CrossRand2), itype=AgingIndividual, **ukwargs) |
1096
|
|
|
|
1097
|
|
|
def evolve(self, pop, xb, task, **kwargs): |
1098
|
|
|
r"""Evolve current population. |
1099
|
|
|
|
1100
|
|
|
Args: |
1101
|
|
|
pop (numpy.ndarray): Current population. |
1102
|
|
|
xb (numpy.ndarray): Global best individual. |
1103
|
|
|
task (Task): Optimization task. |
1104
|
|
|
**kwargs (Dict[str, Any]): Additional arguments. |
1105
|
|
|
|
1106
|
|
|
Returns: |
1107
|
|
|
numpy.ndarray: New population of individuals. |
1108
|
|
|
""" |
1109
|
|
|
return MultiStrategyDifferentialEvolution.evolve(self, pop, xb, task, **kwargs) |
1110
|
|
|
|
1111
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
1112
|
|
|
|