NatLibFi /
Annif
| 1 | """Evaluation metrics for Annif""" |
||
| 2 | |||
| 3 | from __future__ import annotations |
||
| 4 | |||
| 5 | import warnings |
||
| 6 | from typing import TYPE_CHECKING |
||
| 7 | |||
| 8 | import numpy as np |
||
| 9 | import scipy.sparse |
||
| 10 | from sklearn.metrics import f1_score, precision_score, recall_score |
||
| 11 | |||
| 12 | from annif.exception import NotSupportedException |
||
| 13 | from annif.suggestion import SuggestionBatch, filter_suggestion |
||
| 14 | |||
| 15 | if TYPE_CHECKING: |
||
| 16 | from collections.abc import Iterable, Iterator, Sequence |
||
| 17 | from io import TextIOWrapper |
||
| 18 | |||
| 19 | from click.utils import LazyFile |
||
| 20 | from scipy.sparse._arrays import csr_array |
||
| 21 | |||
| 22 | from annif.corpus.subject import SubjectIndex, SubjectSet |
||
| 23 | from annif.suggestion import SubjectSuggestion |
||
| 24 | |||
| 25 | |||
| 26 | def true_positives(y_true: csr_array, y_pred: csr_array) -> int: |
||
| 27 | """calculate the number of true positives using bitwise operations, |
||
| 28 | emulating the way sklearn evaluation metric functions work""" |
||
| 29 | return int((y_true.multiply(y_pred)).sum()) |
||
| 30 | |||
| 31 | |||
| 32 | def false_positives(y_true: csr_array, y_pred: csr_array) -> int: |
||
| 33 | """calculate the number of false positives using bitwise operations, |
||
| 34 | emulating the way sklearn evaluation metric functions work""" |
||
| 35 | return int((y_true < y_pred).sum()) |
||
| 36 | |||
| 37 | |||
| 38 | def false_negatives(y_true: csr_array, y_pred: csr_array) -> int: |
||
| 39 | """calculate the number of false negatives using bitwise operations, |
||
| 40 | emulating the way sklearn evaluation metric functions work""" |
||
| 41 | return int((y_true > y_pred).sum()) |
||
| 42 | |||
| 43 | |||
| 44 | def dcg_score( |
||
| 45 | y_true: csr_array, y_pred: csr_array, limit: int | None = None |
||
| 46 | ) -> np.float64: |
||
| 47 | """return the discounted cumulative gain (DCG) score for the selected |
||
| 48 | labels vs. relevant labels""" |
||
| 49 | |||
| 50 | n_pred = y_pred.count_nonzero() |
||
| 51 | if limit is not None: |
||
| 52 | n_pred = min(limit, n_pred) |
||
| 53 | |||
| 54 | top_k = y_pred.data.argsort()[-n_pred:][::-1] |
||
| 55 | order = y_pred.indices[top_k] |
||
| 56 | gain = y_true[:, order] |
||
| 57 | discount = np.log2(np.arange(1, n_pred + 1) + 1) |
||
| 58 | return (gain / discount).sum() |
||
| 59 | |||
| 60 | |||
| 61 | def ndcg_score(y_true: csr_array, y_pred: csr_array, limit: int | None = None) -> float: |
||
| 62 | """return the normalized discounted cumulative gain (nDCG) score for the |
||
| 63 | selected labels vs. relevant labels""" |
||
| 64 | |||
| 65 | scores = np.ones(y_true.shape[0], dtype=np.float32) |
||
| 66 | for i in range(y_true.shape[0]): |
||
| 67 | true = y_true[[i]] |
||
| 68 | idcg = dcg_score(true, true, limit) |
||
| 69 | if idcg > 0: |
||
| 70 | pred = y_pred[[i]] |
||
| 71 | dcg = dcg_score(true, pred, limit) |
||
| 72 | scores[i] = dcg / idcg |
||
| 73 | |||
| 74 | return float(scores.mean()) |
||
| 75 | |||
| 76 | |||
| 77 | class EvaluationBatch: |
||
| 78 | """A class for evaluating batches of results using all available metrics. |
||
| 79 | The evaluate() method is called once per document in the batch or evaluate_many() |
||
| 80 | for a list of documents of the batch. Final results can be queried using the |
||
| 81 | results() method.""" |
||
| 82 | |||
| 83 | def __init__(self, subject_index: SubjectIndex) -> None: |
||
| 84 | self._subject_index = subject_index |
||
| 85 | self._suggestion_arrays = [] |
||
| 86 | self._gold_subject_arrays = [] |
||
| 87 | |||
| 88 | def evaluate_many( |
||
| 89 | self, |
||
| 90 | suggestion_batch: ( |
||
| 91 | list[list[SubjectSuggestion]] | SuggestionBatch | list[Iterator] |
||
| 92 | ), |
||
| 93 | gold_subject_batch: Sequence[SubjectSet], |
||
| 94 | ) -> None: |
||
| 95 | if not isinstance(suggestion_batch, SuggestionBatch): |
||
| 96 | suggestion_batch = SuggestionBatch.from_sequence( |
||
| 97 | suggestion_batch, self._subject_index |
||
| 98 | ) |
||
| 99 | self._suggestion_arrays.append(suggestion_batch.array) |
||
| 100 | |||
| 101 | # convert gold_subject_batch to sparse matrix |
||
| 102 | ar = scipy.sparse.dok_array( |
||
| 103 | (len(gold_subject_batch), len(self._subject_index)), dtype=bool |
||
| 104 | ) |
||
| 105 | for idx, subject_set in enumerate(gold_subject_batch): |
||
| 106 | for subject_id in subject_set: |
||
| 107 | ar[idx, subject_id] = True |
||
| 108 | self._gold_subject_arrays.append(ar.tocsr()) |
||
| 109 | |||
| 110 | def _evaluate_samples( |
||
| 111 | self, |
||
| 112 | y_true: csr_array, |
||
| 113 | y_pred: csr_array, |
||
| 114 | metrics: Iterable[str] = [], |
||
| 115 | ) -> dict[str, float]: |
||
| 116 | y_pred_binary = y_pred > 0.0 |
||
| 117 | |||
| 118 | # define the available metrics as lazy lambda functions |
||
| 119 | # so we can execute only the ones actually requested |
||
| 120 | all_metrics = { |
||
| 121 | "Precision (doc avg)": lambda: precision_score( |
||
| 122 | y_true, y_pred_binary, average="samples" |
||
| 123 | ), |
||
| 124 | "Recall (doc avg)": lambda: recall_score( |
||
| 125 | y_true, y_pred_binary, average="samples" |
||
| 126 | ), |
||
| 127 | "F1 score (doc avg)": lambda: f1_score( |
||
| 128 | y_true, y_pred_binary, average="samples" |
||
| 129 | ), |
||
| 130 | "Precision (subj avg)": lambda: precision_score( |
||
| 131 | y_true, y_pred_binary, average="macro" |
||
| 132 | ), |
||
| 133 | "Recall (subj avg)": lambda: recall_score( |
||
| 134 | y_true, y_pred_binary, average="macro" |
||
| 135 | ), |
||
| 136 | "F1 score (subj avg)": lambda: f1_score( |
||
| 137 | y_true, y_pred_binary, average="macro" |
||
| 138 | ), |
||
| 139 | "Precision (weighted subj avg)": lambda: precision_score( |
||
| 140 | y_true, y_pred_binary, average="weighted" |
||
| 141 | ), |
||
| 142 | "Recall (weighted subj avg)": lambda: recall_score( |
||
| 143 | y_true, y_pred_binary, average="weighted" |
||
| 144 | ), |
||
| 145 | "F1 score (weighted subj avg)": lambda: f1_score( |
||
| 146 | y_true, y_pred_binary, average="weighted" |
||
| 147 | ), |
||
| 148 | "Precision (microavg)": lambda: precision_score( |
||
| 149 | y_true, y_pred_binary, average="micro" |
||
| 150 | ), |
||
| 151 | "Recall (microavg)": lambda: recall_score( |
||
| 152 | y_true, y_pred_binary, average="micro" |
||
| 153 | ), |
||
| 154 | "F1 score (microavg)": lambda: f1_score( |
||
| 155 | y_true, y_pred_binary, average="micro" |
||
| 156 | ), |
||
| 157 | "F1@5": lambda: f1_score( |
||
| 158 | y_true, filter_suggestion(y_pred, 5) > 0.0, average="samples" |
||
| 159 | ), |
||
| 160 | "NDCG": lambda: ndcg_score(y_true, y_pred), |
||
| 161 | "NDCG@5": lambda: ndcg_score(y_true, y_pred, limit=5), |
||
| 162 | "NDCG@10": lambda: ndcg_score(y_true, y_pred, limit=10), |
||
| 163 | "Precision@1": lambda: precision_score( |
||
| 164 | y_true, filter_suggestion(y_pred, 1) > 0.0, average="samples" |
||
| 165 | ), |
||
| 166 | "Precision@3": lambda: precision_score( |
||
| 167 | y_true, filter_suggestion(y_pred, 3) > 0.0, average="samples" |
||
| 168 | ), |
||
| 169 | "Precision@5": lambda: precision_score( |
||
| 170 | y_true, filter_suggestion(y_pred, 5) > 0.0, average="samples" |
||
| 171 | ), |
||
| 172 | "True positives": lambda: true_positives(y_true, y_pred_binary), |
||
| 173 | "False positives": lambda: false_positives(y_true, y_pred_binary), |
||
| 174 | "False negatives": lambda: false_negatives(y_true, y_pred_binary), |
||
| 175 | } |
||
| 176 | |||
| 177 | if not metrics: |
||
| 178 | metrics = all_metrics.keys() |
||
| 179 | |||
| 180 | with warnings.catch_warnings(): |
||
| 181 | warnings.simplefilter("ignore") |
||
| 182 | |||
| 183 | return {metric: all_metrics[metric]() for metric in metrics} |
||
| 184 | |||
| 185 | def _result_per_subject_header( |
||
| 186 | self, results_file: LazyFile | TextIOWrapper |
||
| 187 | ) -> None: |
||
| 188 | print( |
||
| 189 | "\t".join( |
||
| 190 | [ |
||
| 191 | "URI", |
||
| 192 | "Label", |
||
| 193 | "Support", |
||
| 194 | "True_positives", |
||
| 195 | "False_positives", |
||
| 196 | "False_negatives", |
||
| 197 | "Precision", |
||
| 198 | "Recall", |
||
| 199 | "F1_score", |
||
| 200 | ] |
||
| 201 | ), |
||
| 202 | file=results_file, |
||
| 203 | ) |
||
| 204 | |||
| 205 | def _result_per_subject_body( |
||
| 206 | self, zipped_results: zip, results_file: LazyFile | TextIOWrapper |
||
| 207 | ) -> None: |
||
| 208 | for row in zipped_results: |
||
| 209 | print("\t".join((str(e) for e in row)), file=results_file) |
||
|
0 ignored issues
–
show
introduced
by
Loading history...
|
|||
| 210 | |||
| 211 | def output_result_per_subject( |
||
| 212 | self, |
||
| 213 | y_true: csr_array, |
||
| 214 | y_pred: csr_array, |
||
| 215 | results_file: TextIOWrapper | LazyFile, |
||
| 216 | language: str, |
||
| 217 | ) -> None: |
||
| 218 | """Write results per subject (non-aggregated) |
||
| 219 | to outputfile results_file, using labels in the given language""" |
||
| 220 | |||
| 221 | y_pred = y_pred.T > 0.0 |
||
| 222 | y_true = y_true.T |
||
| 223 | |||
| 224 | true_pos = y_true.multiply(y_pred).sum(axis=1) |
||
| 225 | false_pos = (y_true < y_pred).sum(axis=1) |
||
| 226 | false_neg = (y_true > y_pred).sum(axis=1) |
||
| 227 | |||
| 228 | with np.errstate(invalid="ignore"): |
||
| 229 | precision = np.nan_to_num(true_pos / (true_pos + false_pos)) |
||
| 230 | recall = np.nan_to_num(true_pos / (true_pos + false_neg)) |
||
| 231 | f1_score = np.nan_to_num(2 * (precision * recall) / (precision + recall)) |
||
| 232 | |||
| 233 | zipped = zip( |
||
| 234 | [subj.uri for subj in self._subject_index], # URI |
||
| 235 | [subj.labels[language] for subj in self._subject_index], # Label |
||
| 236 | y_true.sum(axis=1), # Support |
||
| 237 | true_pos, # True positives |
||
| 238 | false_pos, # False positives |
||
| 239 | false_neg, # False negatives |
||
| 240 | precision, # Precision |
||
| 241 | recall, # Recall |
||
| 242 | f1_score, # F1 score |
||
| 243 | ) |
||
| 244 | self._result_per_subject_header(results_file) |
||
| 245 | self._result_per_subject_body(zipped, results_file) |
||
| 246 | |||
| 247 | def results( |
||
| 248 | self, |
||
| 249 | metrics: Iterable[str] = [], |
||
| 250 | results_file: LazyFile | TextIOWrapper | None = None, |
||
| 251 | language: str | None = None, |
||
| 252 | ) -> dict[str, float]: |
||
| 253 | """evaluate a set of selected subjects against a gold standard using |
||
| 254 | different metrics. If metrics is empty, use all available metrics. |
||
| 255 | If results_file (file object) given, write results per subject to it |
||
| 256 | with labels expressed in the given language.""" |
||
| 257 | |||
| 258 | if not self._suggestion_arrays: |
||
| 259 | raise NotSupportedException("cannot evaluate empty corpus") |
||
| 260 | |||
| 261 | y_pred = scipy.sparse.csr_array(scipy.sparse.vstack(self._suggestion_arrays)) |
||
| 262 | y_true = scipy.sparse.csr_array(scipy.sparse.vstack(self._gold_subject_arrays)) |
||
| 263 | |||
| 264 | results = self._evaluate_samples(y_true, y_pred, metrics) |
||
| 265 | results["Documents evaluated"] = int(y_true.shape[0]) |
||
| 266 | |||
| 267 | if results_file: |
||
| 268 | self.output_result_per_subject(y_true, y_pred, results_file, language) |
||
| 269 | return results |
||
| 270 |