|
1
|
|
|
"""Project management functionality for Annif""" |
|
2
|
|
|
|
|
3
|
|
|
import enum |
|
4
|
|
|
import os.path |
|
5
|
|
|
from shutil import rmtree |
|
6
|
|
|
|
|
7
|
|
|
import annif |
|
8
|
|
|
import annif.analyzer |
|
9
|
|
|
import annif.backend |
|
10
|
|
|
import annif.corpus |
|
11
|
|
|
import annif.suggestion |
|
12
|
|
|
import annif.transform |
|
13
|
|
|
from annif.datadir import DatadirMixin |
|
14
|
|
|
from annif.exception import ( |
|
15
|
|
|
AnnifException, |
|
16
|
|
|
ConfigurationException, |
|
17
|
|
|
NotInitializedException, |
|
18
|
|
|
NotSupportedException, |
|
19
|
|
|
) |
|
20
|
|
|
|
|
21
|
|
|
logger = annif.logger |
|
22
|
|
|
|
|
23
|
|
|
|
|
24
|
|
|
class Access(enum.IntEnum): |
|
25
|
|
|
"""Enumeration of access levels for projects""" |
|
26
|
|
|
|
|
27
|
|
|
private = 1 |
|
28
|
|
|
hidden = 2 |
|
29
|
|
|
public = 3 |
|
30
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
class AnnifProject(DatadirMixin): |
|
33
|
|
|
"""Class representing the configuration of a single Annif project.""" |
|
34
|
|
|
|
|
35
|
|
|
# defaults for uninitialized instances |
|
36
|
|
|
_transform = None |
|
37
|
|
|
_analyzer = None |
|
38
|
|
|
_backend = None |
|
39
|
|
|
_vocab = None |
|
40
|
|
|
_vocab_lang = None |
|
41
|
|
|
initialized = False |
|
42
|
|
|
|
|
43
|
|
|
# default values for configuration settings |
|
44
|
|
|
DEFAULT_ACCESS = "public" |
|
45
|
|
|
|
|
46
|
|
|
def __init__(self, project_id, config, datadir, registry): |
|
47
|
|
|
DatadirMixin.__init__(self, datadir, "projects", project_id) |
|
48
|
|
|
self.project_id = project_id |
|
49
|
|
|
self.name = config.get("name", project_id) |
|
50
|
|
|
self.language = config["language"] |
|
51
|
|
|
self.analyzer_spec = config.get("analyzer", None) |
|
52
|
|
|
self.transform_spec = config.get("transform", "pass") |
|
53
|
|
|
self.vocab_spec = config.get("vocab", None) |
|
54
|
|
|
self.config = config |
|
55
|
|
|
self._base_datadir = datadir |
|
56
|
|
|
self.registry = registry |
|
57
|
|
|
self._init_access() |
|
58
|
|
|
|
|
59
|
|
|
def _init_access(self): |
|
60
|
|
|
access = self.config.get("access", self.DEFAULT_ACCESS) |
|
61
|
|
|
try: |
|
62
|
|
|
self.access = getattr(Access, access) |
|
63
|
|
|
except AttributeError: |
|
64
|
|
|
raise ConfigurationException( |
|
65
|
|
|
"'{}' is not a valid access setting".format(access), |
|
66
|
|
|
project_id=self.project_id, |
|
67
|
|
|
) |
|
68
|
|
|
|
|
69
|
|
|
def _initialize_analyzer(self): |
|
70
|
|
|
if not self.analyzer_spec: |
|
71
|
|
|
return # not configured, so assume it's not needed |
|
72
|
|
|
analyzer = self.analyzer |
|
73
|
|
|
logger.debug( |
|
74
|
|
|
"Project '%s': initialized analyzer: %s", self.project_id, str(analyzer) |
|
75
|
|
|
) |
|
76
|
|
|
|
|
77
|
|
|
def _initialize_subjects(self): |
|
78
|
|
|
try: |
|
79
|
|
|
subjects = self.subjects |
|
80
|
|
|
logger.debug( |
|
81
|
|
|
"Project '%s': initialized subjects: %s", self.project_id, str(subjects) |
|
82
|
|
|
) |
|
83
|
|
|
except AnnifException as err: |
|
84
|
|
|
logger.warning(err.format_message()) |
|
85
|
|
|
|
|
86
|
|
|
def _initialize_backend(self, parallel): |
|
87
|
|
|
logger.debug("Project '%s': initializing backend", self.project_id) |
|
88
|
|
|
try: |
|
89
|
|
|
if not self.backend: |
|
90
|
|
|
logger.debug("Cannot initialize backend: does not exist") |
|
91
|
|
|
return |
|
92
|
|
|
self.backend.initialize(parallel) |
|
93
|
|
|
except AnnifException as err: |
|
94
|
|
|
logger.warning(err.format_message()) |
|
95
|
|
|
|
|
96
|
|
|
def initialize(self, parallel=False): |
|
97
|
|
|
"""Initialize this project and its backend so that they are ready to |
|
98
|
|
|
be used. If parallel is True, expect that the project will be used |
|
99
|
|
|
for parallel processing.""" |
|
100
|
|
|
|
|
101
|
|
|
if self.initialized: |
|
102
|
|
|
return |
|
103
|
|
|
|
|
104
|
|
|
logger.debug("Initializing project '%s'", self.project_id) |
|
105
|
|
|
|
|
106
|
|
|
self._initialize_analyzer() |
|
107
|
|
|
self._initialize_subjects() |
|
108
|
|
|
self._initialize_backend(parallel) |
|
109
|
|
|
|
|
110
|
|
|
self.initialized = True |
|
111
|
|
|
|
|
112
|
|
|
def _suggest_with_backend(self, text, backend_params): |
|
113
|
|
|
if backend_params is None: |
|
114
|
|
|
backend_params = {} |
|
115
|
|
|
beparams = backend_params.get(self.backend.backend_id, {}) |
|
116
|
|
|
hits = self.backend.suggest(text, beparams) |
|
117
|
|
|
logger.debug("Got %d hits from backend %s", len(hits), self.backend.backend_id) |
|
118
|
|
|
return hits |
|
119
|
|
|
|
|
120
|
|
|
def _suggest_batch_with_backend(self, corpus, backend_params): |
|
121
|
|
|
if backend_params is None: |
|
122
|
|
|
backend_params = {} |
|
123
|
|
|
beparams = backend_params.get(self.backend.backend_id, {}) |
|
124
|
|
|
hit_sets = self.backend.suggest_batch(corpus, beparams) |
|
125
|
|
|
logger.debug( |
|
126
|
|
|
"Got %d hit sets from backend %s", len(hit_sets), self.backend.backend_id |
|
127
|
|
|
) |
|
128
|
|
|
return hit_sets |
|
129
|
|
|
|
|
130
|
|
|
@property |
|
131
|
|
|
def analyzer(self): |
|
132
|
|
|
if self._analyzer is None: |
|
133
|
|
|
if self.analyzer_spec: |
|
134
|
|
|
self._analyzer = annif.analyzer.get_analyzer(self.analyzer_spec) |
|
135
|
|
|
else: |
|
136
|
|
|
raise ConfigurationException( |
|
137
|
|
|
"analyzer setting is missing", project_id=self.project_id |
|
138
|
|
|
) |
|
139
|
|
|
return self._analyzer |
|
140
|
|
|
|
|
141
|
|
|
@property |
|
142
|
|
|
def transform(self): |
|
143
|
|
|
if self._transform is None: |
|
144
|
|
|
self._transform = annif.transform.get_transform( |
|
145
|
|
|
self.transform_spec, project=self |
|
146
|
|
|
) |
|
147
|
|
|
return self._transform |
|
148
|
|
|
|
|
149
|
|
|
@property |
|
150
|
|
|
def backend(self): |
|
151
|
|
|
if self._backend is None: |
|
152
|
|
|
if "backend" not in self.config: |
|
153
|
|
|
raise ConfigurationException( |
|
154
|
|
|
"backend setting is missing", project_id=self.project_id |
|
155
|
|
|
) |
|
156
|
|
|
backend_id = self.config["backend"] |
|
157
|
|
|
try: |
|
158
|
|
|
backend_class = annif.backend.get_backend(backend_id) |
|
159
|
|
|
self._backend = backend_class( |
|
160
|
|
|
backend_id, config_params=self.config, project=self |
|
161
|
|
|
) |
|
162
|
|
|
except ValueError: |
|
163
|
|
|
logger.warning( |
|
164
|
|
|
"Could not create backend %s, " |
|
165
|
|
|
"make sure you've installed optional dependencies", |
|
166
|
|
|
backend_id, |
|
167
|
|
|
) |
|
168
|
|
|
return self._backend |
|
169
|
|
|
|
|
170
|
|
|
def _initialize_vocab(self): |
|
171
|
|
|
if self.vocab_spec is None: |
|
172
|
|
|
raise ConfigurationException( |
|
173
|
|
|
"vocab setting is missing", project_id=self.project_id |
|
174
|
|
|
) |
|
175
|
|
|
self._vocab, self._vocab_lang = self.registry.get_vocab( |
|
176
|
|
|
self.vocab_spec, self.language |
|
177
|
|
|
) |
|
178
|
|
|
|
|
179
|
|
|
@property |
|
180
|
|
|
def vocab(self): |
|
181
|
|
|
if self._vocab is None: |
|
182
|
|
|
self._initialize_vocab() |
|
183
|
|
|
return self._vocab |
|
184
|
|
|
|
|
185
|
|
|
@property |
|
186
|
|
|
def vocab_lang(self): |
|
187
|
|
|
if self._vocab_lang is None: |
|
188
|
|
|
self._initialize_vocab() |
|
189
|
|
|
return self._vocab_lang |
|
190
|
|
|
|
|
191
|
|
|
@property |
|
192
|
|
|
def subjects(self): |
|
193
|
|
|
return self.vocab.subjects |
|
194
|
|
|
|
|
195
|
|
|
def _get_info(self, key): |
|
196
|
|
|
try: |
|
197
|
|
|
be = self.backend |
|
198
|
|
|
if be is not None: |
|
199
|
|
|
return getattr(be, key) |
|
200
|
|
|
except AnnifException as err: |
|
201
|
|
|
logger.warning(err.format_message()) |
|
202
|
|
|
return None |
|
203
|
|
|
|
|
204
|
|
|
@property |
|
205
|
|
|
def is_trained(self): |
|
206
|
|
|
return self._get_info("is_trained") |
|
207
|
|
|
|
|
208
|
|
|
@property |
|
209
|
|
|
def modification_time(self): |
|
210
|
|
|
return self._get_info("modification_time") |
|
211
|
|
|
|
|
212
|
|
|
def suggest(self, text, backend_params=None): |
|
213
|
|
|
"""Suggest subjects the given text by passing it to the backend. Returns a |
|
214
|
|
|
list of SubjectSuggestion objects ordered by decreasing score.""" |
|
215
|
|
|
if not self.is_trained: |
|
216
|
|
|
if self.is_trained is None: |
|
217
|
|
|
logger.warning("Could not get train state information.") |
|
218
|
|
|
else: |
|
219
|
|
|
raise NotInitializedException("Project is not trained.") |
|
220
|
|
|
logger.debug( |
|
221
|
|
|
'Suggesting subjects for text "%s..." (len=%d)', text[:20], len(text) |
|
222
|
|
|
) |
|
223
|
|
|
text = self.transform.transform_text(text) |
|
224
|
|
|
hits = self._suggest_with_backend(text, backend_params) |
|
225
|
|
|
logger.debug("%d hits from backend", len(hits)) |
|
226
|
|
|
return hits |
|
227
|
|
|
|
|
228
|
|
|
def suggest_batch(self, corpus, backend_params=None): |
|
229
|
|
|
"""Suggest subjects for the given documents using batches of documents in their |
|
230
|
|
|
operations when possible.""" |
|
231
|
|
|
if not self.is_trained: |
|
232
|
|
|
if self.is_trained is None: |
|
233
|
|
|
logger.warning("Could not get train state information.") |
|
234
|
|
|
else: |
|
235
|
|
|
raise NotInitializedException("Project is not trained.") |
|
236
|
|
|
corpus = self.transform.transform_corpus(corpus) |
|
237
|
|
|
logger.debug( |
|
238
|
|
|
f"Suggesting subjects for a batch of {sum(1 for _ in corpus.documents)}" |
|
239
|
|
|
" documents" |
|
240
|
|
|
) |
|
241
|
|
|
return self._suggest_batch_with_backend(corpus, backend_params) |
|
242
|
|
|
|
|
243
|
|
|
def train(self, corpus, backend_params=None, jobs=0): |
|
244
|
|
|
"""train the project using documents from a metadata source""" |
|
245
|
|
|
if corpus != "cached": |
|
246
|
|
|
corpus = self.transform.transform_corpus(corpus) |
|
247
|
|
|
if backend_params is None: |
|
248
|
|
|
backend_params = {} |
|
249
|
|
|
beparams = backend_params.get(self.backend.backend_id, {}) |
|
250
|
|
|
self.backend.train(corpus, beparams, jobs) |
|
251
|
|
|
|
|
252
|
|
|
def learn(self, corpus, backend_params=None): |
|
253
|
|
|
"""further train the project using documents from a metadata source""" |
|
254
|
|
|
if backend_params is None: |
|
255
|
|
|
backend_params = {} |
|
256
|
|
|
beparams = backend_params.get(self.backend.backend_id, {}) |
|
257
|
|
|
corpus = self.transform.transform_corpus(corpus) |
|
258
|
|
|
if isinstance(self.backend, annif.backend.backend.AnnifLearningBackend): |
|
259
|
|
|
self.backend.learn(corpus, beparams) |
|
260
|
|
|
else: |
|
261
|
|
|
raise NotSupportedException( |
|
262
|
|
|
"Learning not supported by backend", project_id=self.project_id |
|
263
|
|
|
) |
|
264
|
|
|
|
|
265
|
|
|
def hyperopt(self, corpus, trials, jobs, metric, results_file): |
|
266
|
|
|
"""optimize the hyperparameters of the project using a validation |
|
267
|
|
|
corpus against a given metric""" |
|
268
|
|
|
if isinstance(self.backend, annif.backend.hyperopt.AnnifHyperoptBackend): |
|
269
|
|
|
optimizer = self.backend.get_hp_optimizer(corpus, metric) |
|
270
|
|
|
return optimizer.optimize(trials, jobs, results_file) |
|
271
|
|
|
|
|
272
|
|
|
raise NotSupportedException( |
|
273
|
|
|
"Hyperparameter optimization not supported " "by backend", |
|
274
|
|
|
project_id=self.project_id, |
|
275
|
|
|
) |
|
276
|
|
|
|
|
277
|
|
|
def dump(self): |
|
278
|
|
|
"""return this project as a dict""" |
|
279
|
|
|
return { |
|
280
|
|
|
"project_id": self.project_id, |
|
281
|
|
|
"name": self.name, |
|
282
|
|
|
"language": self.language, |
|
283
|
|
|
"backend": {"backend_id": self.config.get("backend")}, |
|
284
|
|
|
"is_trained": self.is_trained, |
|
285
|
|
|
"modification_time": self.modification_time, |
|
286
|
|
|
} |
|
287
|
|
|
|
|
288
|
|
|
def remove_model_data(self): |
|
289
|
|
|
"""remove the data of this project""" |
|
290
|
|
|
datadir_path = self._datadir_path |
|
291
|
|
|
if os.path.isdir(datadir_path): |
|
292
|
|
|
rmtree(datadir_path) |
|
293
|
|
|
logger.info("Removed model data for project {}.".format(self.project_id)) |
|
294
|
|
|
else: |
|
295
|
|
|
logger.warning( |
|
296
|
|
|
"No model data to remove for project {}.".format(self.project_id) |
|
297
|
|
|
) |
|
298
|
|
|
|