|
1
|
|
|
"""Backend utilizing a large-language model.""" |
|
2
|
|
|
|
|
3
|
|
|
from __future__ import annotations |
|
4
|
|
|
|
|
5
|
|
|
import concurrent.futures |
|
6
|
|
|
import json |
|
7
|
|
|
import os |
|
8
|
|
|
from typing import TYPE_CHECKING, Any, Optional |
|
9
|
|
|
|
|
10
|
|
|
import tiktoken |
|
11
|
|
|
from openai import AzureOpenAI, BadRequestError, OpenAI, OpenAIError |
|
12
|
|
|
from transformers import AutoTokenizer |
|
13
|
|
|
|
|
14
|
|
|
import annif.eval |
|
15
|
|
|
import annif.parallel |
|
16
|
|
|
import annif.util |
|
17
|
|
|
from annif.exception import ConfigurationException, OperationFailedException |
|
18
|
|
|
from annif.suggestion import SubjectSuggestion, SuggestionBatch |
|
19
|
|
|
|
|
20
|
|
|
from . import backend, ensemble, hyperopt |
|
21
|
|
|
|
|
22
|
|
|
if TYPE_CHECKING: |
|
23
|
|
|
from annif.corpus.document import DocumentCorpus |
|
24
|
|
|
|
|
25
|
|
|
|
|
26
|
|
|
class BaseLLMBackend(backend.AnnifBackend): |
|
27
|
|
|
"""Base class for LLM backends""" |
|
28
|
|
|
|
|
29
|
|
|
_client = None |
|
30
|
|
|
|
|
31
|
|
|
DEFAULT_PARAMETERS = { |
|
32
|
|
|
"api_version": "2024-10-21", |
|
33
|
|
|
"temperature": 0.0, |
|
34
|
|
|
"top_p": 1.0, |
|
35
|
|
|
"seed": 0, |
|
36
|
|
|
"max_completion_tokens": 2000, |
|
37
|
|
|
} |
|
38
|
|
|
|
|
39
|
|
|
def initialize(self, parallel: bool = False) -> None: |
|
40
|
|
|
if self._client is not None: |
|
41
|
|
|
return |
|
42
|
|
|
|
|
43
|
|
|
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") |
|
44
|
|
|
api_base_url = os.getenv("LLM_API_BASE_URL") |
|
45
|
|
|
try: |
|
46
|
|
|
self.model = self.params["model"] |
|
47
|
|
|
except KeyError as err: |
|
48
|
|
|
raise ConfigurationException( |
|
49
|
|
|
"model setting is missing", project_id=self.project.project_id |
|
50
|
|
|
) |
|
51
|
|
|
|
|
52
|
|
|
if api_base_url is not None: |
|
53
|
|
|
self._client = OpenAI( |
|
54
|
|
|
base_url=api_base_url, |
|
55
|
|
|
api_key=os.getenv("LLM_API_KEY", "dummy-key"), |
|
56
|
|
|
) |
|
57
|
|
|
elif azure_endpoint is not None: |
|
58
|
|
|
self._client = AzureOpenAI( |
|
59
|
|
|
azure_endpoint=azure_endpoint, |
|
60
|
|
|
api_key=os.getenv("AZURE_OPENAI_KEY"), |
|
61
|
|
|
api_version=self.params["api_version"], |
|
62
|
|
|
) |
|
63
|
|
|
else: |
|
64
|
|
|
raise OperationFailedException( |
|
65
|
|
|
"Please set the AZURE_OPENAI_ENDPOINT or LLM_API_BASE_URL " |
|
66
|
|
|
"environment variable for LLM API access." |
|
67
|
|
|
) |
|
68
|
|
|
|
|
69
|
|
|
# Tokenizer is unnecessary if truncation is not performed |
|
70
|
|
|
if int(self.params["max_prompt_tokens"]) > 0: |
|
71
|
|
|
self.tokenizer = self._get_tokenizer() |
|
72
|
|
|
self._verify_connection() |
|
73
|
|
|
super().initialize(parallel) |
|
74
|
|
|
|
|
75
|
|
|
def _get_tokenizer(self): |
|
76
|
|
|
try: |
|
77
|
|
|
# Try OpenAI tokenizer |
|
78
|
|
|
base_model = self.model.rsplit("-", 1)[0] |
|
79
|
|
|
return tiktoken.encoding_for_model(base_model) |
|
80
|
|
|
except KeyError: |
|
81
|
|
|
# Fallback to Hugging Face tokenizer |
|
82
|
|
|
return AutoTokenizer.from_pretrained(self.model) |
|
83
|
|
|
|
|
84
|
|
|
def _verify_connection(self): |
|
85
|
|
|
try: |
|
86
|
|
|
self._call_llm( |
|
87
|
|
|
system_prompt="You are a helpful assistant.", |
|
88
|
|
|
prompt="This is a test prompt to verify the connection.", |
|
89
|
|
|
params=self.params, |
|
90
|
|
|
) |
|
91
|
|
|
except OpenAIError as err: |
|
92
|
|
|
raise OperationFailedException( |
|
93
|
|
|
f"Failed to connect to LLM API: {err}" |
|
94
|
|
|
) from err |
|
95
|
|
|
# print(f"Successfully connected to endpoint {self.params['endpoint']}") |
|
96
|
|
|
|
|
97
|
|
|
def default_params(self): |
|
98
|
|
|
params = backend.AnnifBackend.DEFAULT_PARAMETERS.copy() |
|
99
|
|
|
params.update(BaseLLMBackend.DEFAULT_PARAMETERS.copy()) |
|
100
|
|
|
params.update(self.DEFAULT_PARAMETERS) |
|
101
|
|
|
return params |
|
102
|
|
|
|
|
103
|
|
|
def _truncate_text(self, text, max_prompt_tokens): |
|
104
|
|
|
"""Truncate text so it contains at most max_prompt_tokens according to the |
|
105
|
|
|
OpenAI tokenizer""" |
|
106
|
|
|
tokens = self.tokenizer.encode(text) |
|
107
|
|
|
return self.tokenizer.decode(tokens[:max_prompt_tokens]) |
|
108
|
|
|
|
|
109
|
|
|
def _call_llm( |
|
110
|
|
|
self, |
|
111
|
|
|
system_prompt: str, |
|
112
|
|
|
prompt: str, |
|
113
|
|
|
params: dict[str, Any], |
|
114
|
|
|
response_format: Optional[dict] = None, |
|
115
|
|
|
) -> str: |
|
116
|
|
|
temperature = float(params["temperature"]) |
|
117
|
|
|
top_p = float(params["top_p"]) |
|
118
|
|
|
seed = int(params["seed"]) |
|
119
|
|
|
max_completion_tokens = int(params["max_completion_tokens"]) |
|
120
|
|
|
|
|
121
|
|
|
messages = [ |
|
122
|
|
|
{"role": "system", "content": system_prompt}, |
|
123
|
|
|
{"role": "user", "content": prompt}, |
|
124
|
|
|
] |
|
125
|
|
|
try: |
|
126
|
|
|
completion = self._client.chat.completions.create( |
|
127
|
|
|
model=self.model, |
|
128
|
|
|
messages=messages, |
|
129
|
|
|
temperature=temperature, |
|
130
|
|
|
seed=seed, |
|
131
|
|
|
top_p=top_p, |
|
132
|
|
|
max_completion_tokens=max_completion_tokens, |
|
133
|
|
|
response_format=response_format, |
|
134
|
|
|
) |
|
135
|
|
|
except OpenAIError as err: |
|
136
|
|
|
print(err) |
|
137
|
|
|
return "{}" |
|
138
|
|
|
return completion.choices[0].message.content |
|
139
|
|
|
|
|
140
|
|
|
|
|
141
|
|
|
class LLMEnsembleBackend(BaseLLMBackend, ensemble.EnsembleBackend): |
|
142
|
|
|
"""Ensemble backend that combines results from multiple projects and scores them |
|
143
|
|
|
with a LLM""" |
|
144
|
|
|
|
|
145
|
|
|
name = "llm_ensemble" |
|
146
|
|
|
|
|
147
|
|
|
DEFAULT_PARAMETERS = { |
|
148
|
|
|
"max_prompt_tokens": 0, |
|
149
|
|
|
"llm_weight": 0.7, |
|
150
|
|
|
"llm_exponent": 1.0, |
|
151
|
|
|
"labels_language": "en", |
|
152
|
|
|
"sources_limit": 10, |
|
153
|
|
|
} |
|
154
|
|
|
|
|
155
|
|
|
def get_hp_optimizer(self, corpus: DocumentCorpus, metric: str) -> None: |
|
156
|
|
|
return LLMEnsembleOptimizer(self, corpus, metric) |
|
157
|
|
|
|
|
158
|
|
|
def _suggest_batch( |
|
159
|
|
|
self, texts: list[str], params: dict[str, Any] |
|
160
|
|
|
) -> SuggestionBatch: |
|
161
|
|
|
sources = annif.util.parse_sources(params["sources"]) |
|
162
|
|
|
llm_weight = float(params["llm_weight"]) |
|
163
|
|
|
llm_exponent = float(params["llm_exponent"]) |
|
164
|
|
|
if llm_weight < 0.0 or llm_weight > 1.0: |
|
165
|
|
|
raise ValueError("llm_weight must be between 0.0 and 1.0") |
|
166
|
|
|
if llm_exponent < 0.0: |
|
167
|
|
|
raise ValueError("llm_weight_exp must be greater than or equal to 0.0") |
|
168
|
|
|
|
|
169
|
|
|
batch_by_source = self._suggest_with_sources(texts, sources) |
|
170
|
|
|
merged_source_batch = self._merge_source_batches( |
|
171
|
|
|
batch_by_source, sources, {"limit": params["sources_limit"]} |
|
172
|
|
|
) |
|
173
|
|
|
|
|
174
|
|
|
# Score the suggestion labels with the LLM |
|
175
|
|
|
llm_results_batch = self._llm_suggest_batch(texts, merged_source_batch, params) |
|
176
|
|
|
|
|
177
|
|
|
batches = [merged_source_batch, llm_results_batch] |
|
178
|
|
|
weights = [1.0 - llm_weight, llm_weight] |
|
179
|
|
|
exponents = [1.0, llm_exponent] |
|
180
|
|
|
return SuggestionBatch.from_averaged(batches, weights, exponents).filter( |
|
181
|
|
|
limit=int(params["limit"]) |
|
182
|
|
|
) |
|
183
|
|
|
|
|
184
|
|
|
def _llm_suggest_batch( |
|
185
|
|
|
self, |
|
186
|
|
|
texts: list[str], |
|
187
|
|
|
suggestion_batch: SuggestionBatch, |
|
188
|
|
|
params: dict[str, Any], |
|
189
|
|
|
) -> SuggestionBatch: |
|
190
|
|
|
|
|
191
|
|
|
max_prompt_tokens = int(params["max_prompt_tokens"]) |
|
192
|
|
|
|
|
193
|
|
|
system_prompt = """ |
|
194
|
|
|
You will be given text and a list of keywords to describe it. Your task is |
|
195
|
|
|
to score the keywords with a value between 0 and 100. The score value |
|
196
|
|
|
should depend on how well the keyword represents the text: a perfect |
|
197
|
|
|
keyword should have score 100 and completely unrelated keyword score |
|
198
|
|
|
0. You must output JSON with keywords as field names and add their scores |
|
199
|
|
|
as field values. |
|
200
|
|
|
There must be the same number of objects in the JSON as there are lines in |
|
201
|
|
|
the intput keyword list; do not skip scoring any keywords. |
|
202
|
|
|
""" |
|
203
|
|
|
|
|
204
|
|
|
labels_batch = self._get_labels_batch(suggestion_batch) |
|
205
|
|
|
|
|
206
|
|
|
def process_single_prompt(text, labels): |
|
207
|
|
|
prompt = "Here are the keywords:\n" + "\n".join(labels) + "\n" * 3 |
|
208
|
|
|
if max_prompt_tokens > 0: |
|
209
|
|
|
text = self._truncate_text(text, max_prompt_tokens) |
|
210
|
|
|
prompt += "Here is the text:\n" + text + "\n" |
|
211
|
|
|
|
|
212
|
|
|
response = self._call_llm( |
|
213
|
|
|
system_prompt, |
|
214
|
|
|
prompt, |
|
215
|
|
|
params, |
|
216
|
|
|
response_format={"type": "json_object"}, |
|
217
|
|
|
) |
|
218
|
|
|
try: |
|
219
|
|
|
llm_result = json.loads(response) |
|
220
|
|
|
except (TypeError, json.decoder.JSONDecodeError) as err: |
|
221
|
|
|
print(f"Error decoding JSON response from LLM: '{response[:100]}...'") |
|
222
|
|
|
print(f"{str(err)}") |
|
223
|
|
|
return [SubjectSuggestion(subject_id=None, score=0.0) for _ in labels] |
|
224
|
|
|
|
|
225
|
|
|
return [ |
|
226
|
|
|
( |
|
227
|
|
|
SubjectSuggestion( |
|
228
|
|
|
subject_id=self.project.subjects.by_label( |
|
229
|
|
|
llm_label, self.params["labels_language"] |
|
230
|
|
|
), |
|
231
|
|
|
score=score / 100.0, # LLM scores are between 0 and 100 |
|
232
|
|
|
) |
|
233
|
|
|
if llm_label in labels |
|
234
|
|
|
else SubjectSuggestion(subject_id=None, score=0.0) |
|
235
|
|
|
) |
|
236
|
|
|
for llm_label, score in llm_result.items() |
|
237
|
|
|
] |
|
238
|
|
|
|
|
239
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=32) as executor: |
|
240
|
|
|
llm_batch_suggestions = list( |
|
241
|
|
|
executor.map(process_single_prompt, texts, labels_batch) |
|
242
|
|
|
) |
|
243
|
|
|
|
|
244
|
|
|
return SuggestionBatch.from_sequence( |
|
245
|
|
|
llm_batch_suggestions, |
|
246
|
|
|
self.project.subjects, |
|
247
|
|
|
) |
|
248
|
|
|
|
|
249
|
|
|
def _get_labels_batch(self, suggestion_batch: SuggestionBatch) -> list[list[str]]: |
|
250
|
|
|
return [ |
|
251
|
|
|
[ |
|
252
|
|
|
self.project.subjects[suggestion.subject_id].labels[ |
|
253
|
|
|
self.params["labels_language"] |
|
254
|
|
|
] |
|
255
|
|
|
for suggestion in suggestion_result |
|
256
|
|
|
] |
|
257
|
|
|
for suggestion_result in suggestion_batch |
|
258
|
|
|
] |
|
259
|
|
|
|
|
260
|
|
|
|
|
261
|
|
|
class LLMEnsembleOptimizer(ensemble.EnsembleOptimizer): |
|
262
|
|
|
"""Hyperparameter optimizer for the LLM ensemble backend""" |
|
263
|
|
|
|
|
264
|
|
|
def _prepare(self, n_jobs=1): |
|
265
|
|
|
sources = annif.util.parse_sources(self._backend.params["sources"]) |
|
266
|
|
|
project_ids = [source[0] for source in sources] |
|
267
|
|
|
|
|
268
|
|
|
# initialize the source projects before forking, to save memory |
|
269
|
|
|
# for project_id in sources.keys(): |
|
270
|
|
|
# project = self._backend.project.registry.get_project(project_id) |
|
271
|
|
|
# project.initialize(parallel=True) |
|
272
|
|
|
self._backend.initialize(parallel=True) |
|
273
|
|
|
|
|
274
|
|
|
psmap = annif.parallel.ProjectSuggestMap( |
|
275
|
|
|
self._backend.project.registry, |
|
276
|
|
|
project_ids, |
|
277
|
|
|
backend_params=None, |
|
278
|
|
|
limit=None, |
|
279
|
|
|
threshold=0.0, |
|
280
|
|
|
) |
|
281
|
|
|
|
|
282
|
|
|
jobs, pool_class = annif.parallel.get_pool(n_jobs) |
|
283
|
|
|
|
|
284
|
|
|
self._gold_batches = [] |
|
285
|
|
|
self._source_batches = [] |
|
286
|
|
|
|
|
287
|
|
|
print("Generating source batches") |
|
288
|
|
|
with pool_class(jobs) as pool: |
|
289
|
|
|
for suggestions_batch, gold_batch in pool.imap_unordered( |
|
290
|
|
|
psmap.suggest_batch, self._corpus.doc_batches |
|
291
|
|
|
): |
|
292
|
|
|
self._source_batches.append(suggestions_batch) |
|
293
|
|
|
self._gold_batches.append(gold_batch) |
|
294
|
|
|
|
|
295
|
|
|
# get the llm batches |
|
296
|
|
|
print("Generating LLM batches") |
|
297
|
|
|
self._merged_source_batches = [] |
|
298
|
|
|
self._llm_batches = [] |
|
299
|
|
|
for batch_by_source, docs_batch in zip( |
|
300
|
|
|
self._source_batches, self._corpus.doc_batches |
|
301
|
|
|
): |
|
302
|
|
|
merged_source_batch = self._backend._merge_source_batches( |
|
303
|
|
|
batch_by_source, |
|
304
|
|
|
sources, |
|
305
|
|
|
{"limit": self._backend.params["sources_limit"]}, |
|
306
|
|
|
) |
|
307
|
|
|
llm_batch = self._backend._llm_suggest_batch( |
|
308
|
|
|
[doc.text for doc in docs_batch], |
|
309
|
|
|
merged_source_batch, |
|
310
|
|
|
self._backend.params, |
|
311
|
|
|
) |
|
312
|
|
|
self._merged_source_batches.append(merged_source_batch) |
|
313
|
|
|
self._llm_batches.append(llm_batch) |
|
314
|
|
|
|
|
315
|
|
|
def _objective(self, trial) -> float: |
|
316
|
|
|
eval_batch = annif.eval.EvaluationBatch(self._backend.project.subjects) |
|
317
|
|
|
params = { |
|
318
|
|
|
"llm_weight": trial.suggest_float("llm_weight", 0.0, 1.0), |
|
319
|
|
|
"llm_exponent": trial.suggest_float("llm_exponent", 0.25, 10.0, log=True), |
|
320
|
|
|
} |
|
321
|
|
|
for merged_source_batch, llm_batch, gold_batch in zip( |
|
322
|
|
|
self._merged_source_batches, self._llm_batches, self._gold_batches |
|
323
|
|
|
): |
|
324
|
|
|
batches = [merged_source_batch, llm_batch] |
|
325
|
|
|
weights = [ |
|
326
|
|
|
1.0 - params["llm_weight"], |
|
327
|
|
|
params["llm_weight"], |
|
328
|
|
|
] |
|
329
|
|
|
exponents = [ |
|
330
|
|
|
1.0, |
|
331
|
|
|
params["llm_exponent"], |
|
332
|
|
|
] |
|
333
|
|
|
avg_batch = SuggestionBatch.from_averaged( |
|
334
|
|
|
batches, weights, exponents |
|
335
|
|
|
).filter(limit=int(self._backend.params["limit"])) |
|
336
|
|
|
eval_batch.evaluate_many(avg_batch, gold_batch) |
|
337
|
|
|
results = eval_batch.results(metrics=[self._metric]) |
|
338
|
|
|
return results[self._metric] |
|
339
|
|
|
|
|
340
|
|
|
def _postprocess(self, study): |
|
341
|
|
|
bp = study.best_params |
|
342
|
|
|
lines = [ |
|
343
|
|
|
f"llm_weight={bp['llm_weight']}", |
|
344
|
|
|
f"llm_exponent={bp['llm_exponent']}", |
|
345
|
|
|
] |
|
346
|
|
|
return hyperopt.HPRecommendation(lines=lines, score=study.best_value) |
|
347
|
|
|
|