| Conditions | 26 |
| Total Lines | 58 |
| Code Lines | 51 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like annif.eval.EvaluationBatch._evaluate_samples() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """Evaluation metrics for Annif""" |
||
| 98 | def _evaluate_samples(self, y_true, y_pred, metrics='all'): |
||
| 99 | y_pred_binary = y_pred > 0.0 |
||
| 100 | |||
| 101 | # define the available metrics as lazy lambda functions |
||
| 102 | # so we can execute only the ones actually requested |
||
| 103 | all_metrics = { |
||
| 104 | 'Precision (doc avg)': lambda: precision_score( |
||
| 105 | y_true, y_pred_binary, average='samples'), |
||
| 106 | 'Recall (doc avg)': lambda: recall_score( |
||
| 107 | y_true, y_pred_binary, average='samples'), |
||
| 108 | 'F1 score (doc avg)': lambda: f1_score( |
||
| 109 | y_true, y_pred_binary, average='samples'), |
||
| 110 | 'Precision (subj avg)': lambda: precision_score( |
||
| 111 | y_true, y_pred_binary, average='macro'), |
||
| 112 | 'Recall (subj avg)': lambda: recall_score( |
||
| 113 | y_true, y_pred_binary, average='macro'), |
||
| 114 | 'F1 score (subj avg)': lambda: f1_score( |
||
| 115 | y_true, y_pred_binary, average='macro'), |
||
| 116 | 'Precision (weighted subj avg)': lambda: precision_score( |
||
| 117 | y_true, y_pred_binary, average='weighted'), |
||
| 118 | 'Recall (weighted subj avg)': lambda: recall_score( |
||
| 119 | y_true, y_pred_binary, average='weighted'), |
||
| 120 | 'F1 score (weighted subj avg)': lambda: f1_score( |
||
| 121 | y_true, y_pred_binary, average='weighted'), |
||
| 122 | 'Precision (microavg)': lambda: precision_score( |
||
| 123 | y_true, y_pred_binary, average='micro'), |
||
| 124 | 'Recall (microavg)': lambda: recall_score( |
||
| 125 | y_true, y_pred_binary, average='micro'), |
||
| 126 | 'F1 score (microavg)': lambda: f1_score( |
||
| 127 | y_true, y_pred_binary, average='micro'), |
||
| 128 | 'F1@5': lambda: f1_score( |
||
| 129 | y_true, filter_pred_top_k(y_pred, 5) > 0.0, average='samples'), |
||
| 130 | 'NDCG': lambda: ndcg_score(y_true, y_pred), |
||
| 131 | 'NDCG@5': lambda: ndcg_score(y_true, y_pred, limit=5), |
||
| 132 | 'NDCG@10': lambda: ndcg_score(y_true, y_pred, limit=10), |
||
| 133 | 'Precision@1': lambda: precision_at_k_score( |
||
| 134 | y_true, y_pred, limit=1), |
||
| 135 | 'Precision@3': lambda: precision_at_k_score( |
||
| 136 | y_true, y_pred, limit=3), |
||
| 137 | 'Precision@5': lambda: precision_at_k_score( |
||
| 138 | y_true, y_pred, limit=5), |
||
| 139 | 'LRAP': lambda: label_ranking_average_precision_score( |
||
| 140 | y_true, y_pred), |
||
| 141 | 'True positives': lambda: true_positives( |
||
| 142 | y_true, y_pred_binary), |
||
| 143 | 'False positives': lambda: false_positives( |
||
| 144 | y_true, y_pred_binary), |
||
| 145 | 'False negatives': lambda: false_negatives( |
||
| 146 | y_true, y_pred_binary), |
||
| 147 | } |
||
| 148 | |||
| 149 | if metrics == 'all': |
||
| 150 | metrics = all_metrics.keys() |
||
| 151 | |||
| 152 | with warnings.catch_warnings(): |
||
| 153 | warnings.simplefilter('ignore') |
||
| 154 | |||
| 155 | return {metric: all_metrics[metric]() for metric in metrics} |
||
| 156 | |||
| 225 |