| 1 |  |  | """Neural network based ensemble backend that combines results from multiple | 
            
                                                                                                            
                            
            
                                    
            
            
                | 2 |  |  | projects.""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 3 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 4 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 5 |  |  | from io import BytesIO | 
            
                                                                                                            
                            
            
                                    
            
            
                | 6 |  |  | import shutil | 
            
                                                                                                            
                            
            
                                    
            
            
                | 7 |  |  | import os.path | 
            
                                                                                                            
                            
            
                                    
            
            
                | 8 |  |  | import numpy as np | 
            
                                                                                                            
                            
            
                                    
            
            
                | 9 |  |  | from scipy.sparse import csr_matrix, csc_matrix | 
            
                                                                                                            
                            
            
                                    
            
            
                | 10 |  |  | import joblib | 
            
                                                                                                            
                            
            
                                    
            
            
                | 11 |  |  | import lmdb | 
            
                                                                                                            
                            
            
                                    
            
            
                | 12 |  |  | from tensorflow.keras.layers import Input, Dense, Add, Flatten, Lambda, Dropout | 
            
                                                                                                            
                            
            
                                    
            
            
                | 13 |  |  | from tensorflow.keras.models import Model, load_model | 
            
                                                                                                            
                            
            
                                    
            
            
                | 14 |  |  | from tensorflow.keras.utils import Sequence | 
            
                                                                                                            
                            
            
                                    
            
            
                | 15 |  |  | import tensorflow.keras.backend as K | 
            
                                                                                                            
                            
            
                                    
            
            
                | 16 |  |  | import annif.corpus | 
            
                                                                                                            
                            
            
                                    
            
            
                | 17 |  |  | import annif.util | 
            
                                                                                                            
                            
            
                                    
            
            
                | 18 |  |  | from annif.exception import NotInitializedException | 
            
                                                                                                            
                            
            
                                    
            
            
                | 19 |  |  | from annif.suggestion import VectorSuggestionResult | 
            
                                                                                                            
                            
            
                                    
            
            
                | 20 |  |  | from . import backend | 
            
                                                                                                            
                            
            
                                    
            
            
                | 21 |  |  | from . import ensemble | 
            
                                                                                                            
                            
            
                                    
            
            
                | 22 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 23 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 24 |  |  | def idx_to_key(idx): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 25 |  |  |     """convert an integer index to a binary key for use in LMDB""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 26 |  |  |     return b'%08d' % idx | 
            
                                                                                                            
                            
            
                                    
            
            
                | 27 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 28 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 29 |  |  | def key_to_idx(key): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 30 |  |  |     """convert a binary LMDB key to an integer index""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 31 |  |  |     return int(key) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 32 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 33 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 34 |  |  | class LMDBSequence(Sequence): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 35 |  |  |     """A sequence of samples stored in a LMDB database.""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 36 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 37 |  |  |     def __init__(self, txn, batch_size): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 38 |  |  |         self._txn = txn | 
            
                                                                                                            
                            
            
                                    
            
            
                | 39 |  |  |         cursor = txn.cursor() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 40 |  |  |         if cursor.last(): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 41 |  |  |             self._counter = key_to_idx(cursor.key()) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 42 |  |  |         else:  # empty database | 
            
                                                                                                            
                            
            
                                    
            
            
                | 43 |  |  |             self._counter = 0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 44 |  |  |         self._batch_size = batch_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 45 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 46 |  |  |     def add_sample(self, inputs, targets): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 47 |  |  |         # use zero-padded 8-digit key | 
            
                                                                                                            
                            
            
                                    
            
            
                | 48 |  |  |         key = idx_to_key(self._counter) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 49 |  |  |         self._counter += 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 50 |  |  |         # convert the sample into a sparse matrix and serialize it as bytes | 
            
                                                                                                            
                            
            
                                    
            
            
                | 51 |  |  |         sample = (csc_matrix(inputs), csr_matrix(targets)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 52 |  |  |         buf = BytesIO() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 53 |  |  |         joblib.dump(sample, buf) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 54 |  |  |         buf.seek(0) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 55 |  |  |         self._txn.put(key, buf.read()) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 56 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 57 |  |  |     def __getitem__(self, idx): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 58 |  |  |         """get a particular batch of samples""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 59 |  |  |         cursor = self._txn.cursor() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 60 |  |  |         first_key = idx * self._batch_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 61 |  |  |         cursor.set_key(idx_to_key(first_key)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 62 |  |  |         input_arrays = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 63 |  |  |         target_arrays = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 64 |  |  |         for key, value in cursor.iternext(): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 65 |  |  |             if key_to_idx(key) >= (first_key + self._batch_size): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 66 |  |  |                 break | 
            
                                                                                                            
                            
            
                                    
            
            
                | 67 |  |  |             input_csr, target_csr = joblib.load(BytesIO(value)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 68 |  |  |             input_arrays.append(input_csr.toarray()) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 69 |  |  |             target_arrays.append(target_csr.toarray().flatten()) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 70 |  |  |         return np.array(input_arrays), np.array(target_arrays) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 71 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 72 |  |  |     def __len__(self): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 73 |  |  |         """return the number of available batches""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 74 |  |  |         return int(np.ceil(self._counter / self._batch_size)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 75 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 76 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 77 |  |  | class NNEnsembleBackend( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 78 |  |  |         backend.AnnifLearningBackend, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 79 |  |  |         ensemble.BaseEnsembleBackend): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 80 |  |  |     """Neural network ensemble backend that combines results from multiple | 
            
                                                                                                            
                            
            
                                    
            
            
                | 81 |  |  |     projects""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 82 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 83 |  |  |     name = "nn_ensemble" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 84 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 85 |  |  |     MODEL_FILE = "nn-model.h5" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 86 |  |  |     LMDB_FILE = 'nn-train.mdb' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 87 |  |  |     LMDB_MAP_SIZE = 1024 * 1024 * 1024 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 88 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 89 |  |  |     DEFAULT_PARAMETERS = { | 
            
                                                                                                            
                            
            
                                    
            
            
                | 90 |  |  |         'nodes': 100, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 91 |  |  |         'dropout_rate': 0.2, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 92 |  |  |         'optimizer': 'adam', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 93 |  |  |         'epochs': 10, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 94 |  |  |         'learn-epochs': 1, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 95 |  |  |     } | 
            
                                                                                                            
                            
            
                                    
            
            
                | 96 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 97 |  |  |     # defaults for uninitialized instances | 
            
                                                                                                            
                            
            
                                    
            
            
                | 98 |  |  |     _model = None | 
            
                                                                                                            
                            
            
                                    
            
            
                | 99 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 100 |  |  |     def default_params(self): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 101 |  |  |         params = {} | 
            
                                                                                                            
                            
            
                                    
            
            
                | 102 |  |  |         params.update(super().default_params()) | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 103 |  |  |         params.update(self.DEFAULT_PARAMETERS) | 
            
                                                                        
                            
            
                                    
            
            
                | 104 |  |  |         return params | 
            
                                                                        
                            
            
                                    
            
            
                | 105 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 106 |  |  |     def initialize(self): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 107 |  |  |         super().initialize() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 108 |  |  |         if self._model is not None: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 109 |  |  |             return  # already initialized | 
            
                                                                                                            
                            
            
                                    
            
            
                | 110 |  |  |         model_filename = os.path.join(self.datadir, self.MODEL_FILE) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 111 |  |  |         if not os.path.exists(model_filename): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 112 |  |  |             raise NotInitializedException( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 113 |  |  |                 'model file {} not found'.format(model_filename), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 114 |  |  |                 backend_id=self.backend_id) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 115 |  |  |         self.debug('loading Keras model from {}'.format(model_filename)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 116 |  |  |         self._model = load_model(model_filename) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 117 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 118 |  |  |     def _merge_hits_from_sources(self, hits_from_sources, params): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 119 |  |  |         score_vector = np.array([hits.as_vector(subjects) * weight | 
            
                                                                                                            
                            
            
                                    
            
            
                | 120 |  |  |                                  for hits, weight, subjects | 
            
                                                                                                            
                            
            
                                    
            
            
                | 121 |  |  |                                  in hits_from_sources], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 122 |  |  |                                 dtype=np.float32) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 123 |  |  |         results = self._model.predict( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 124 |  |  |             np.expand_dims(score_vector.transpose(), 0)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 125 |  |  |         return VectorSuggestionResult(results[0]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 126 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 127 |  |  |     def _create_model(self, sources): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 128 |  |  |         self.info("creating NN ensemble model") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 129 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 130 |  |  |         inputs = Input(shape=(len(self.project.subjects), len(sources))) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 131 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 132 |  |  |         flat_input = Flatten()(inputs) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 133 |  |  |         drop_input = Dropout( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 134 |  |  |             rate=float( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 135 |  |  |                 self.params['dropout_rate']))(flat_input) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 136 |  |  |         hidden = Dense(int(self.params['nodes']), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 137 |  |  |                        activation="relu")(drop_input) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 138 |  |  |         drop_hidden = Dropout(rate=float(self.params['dropout_rate']))(hidden) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 139 |  |  |         delta = Dense(len(self.project.subjects), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 140 |  |  |                       kernel_initializer='zeros', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 141 |  |  |                       bias_initializer='zeros')(drop_hidden) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 142 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 143 |  |  |         mean = Lambda(lambda x: K.mean(x, axis=2))(inputs) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 144 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 145 |  |  |         predictions = Add()([mean, delta]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 146 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 147 |  |  |         self._model = Model(inputs=inputs, outputs=predictions) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 148 |  |  |         self._model.compile(optimizer=self.params['optimizer'], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 149 |  |  |                             loss='binary_crossentropy', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 150 |  |  |                             metrics=['top_k_categorical_accuracy']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 151 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 152 |  |  |         summary = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 153 |  |  |         self._model.summary(print_fn=summary.append) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 154 |  |  |         self.debug("Created model: \n" + "\n".join(summary)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 155 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 156 |  |  |     def _train(self, corpus, params): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 157 |  |  |         sources = annif.util.parse_sources(self.params['sources']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 158 |  |  |         self._create_model(sources) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 159 |  |  |         self._fit_model(corpus, epochs=int(params['epochs'])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 160 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 161 |  |  |     def _corpus_to_vectors(self, corpus, seq): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 162 |  |  |         # pass corpus through all source projects | 
            
                                                                                                            
                            
            
                                    
            
            
                | 163 |  |  |         sources = [(self.project.registry.get_project(project_id), weight) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 164 |  |  |                    for project_id, weight | 
            
                                                                                                            
                            
            
                                    
            
            
                | 165 |  |  |                    in annif.util.parse_sources(self.params['sources'])] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 166 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 167 |  |  |         for doc in corpus.documents: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 168 |  |  |             doc_scores = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 169 |  |  |             for source_project, weight in sources: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 170 |  |  |                 hits = source_project.suggest(doc.text) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 171 |  |  |                 doc_scores.append( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 172 |  |  |                     hits.as_vector(source_project.subjects) * weight) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 173 |  |  |             score_vector = np.array(doc_scores, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 174 |  |  |                                     dtype=np.float32).transpose() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 175 |  |  |             subjects = annif.corpus.SubjectSet((doc.uris, doc.labels)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 176 |  |  |             true_vector = subjects.as_vector(self.project.subjects) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 177 |  |  |             seq.add_sample(score_vector, true_vector) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 178 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 179 |  |  |     def _open_lmdb(self, cached): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 180 |  |  |         lmdb_path = os.path.join(self.datadir, self.LMDB_FILE) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 181 |  |  |         if not cached and os.path.exists(lmdb_path): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 182 |  |  |             shutil.rmtree(lmdb_path) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 183 |  |  |         return lmdb.open(lmdb_path, map_size=self.LMDB_MAP_SIZE, writemap=True) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 184 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 185 |  |  |     def _fit_model(self, corpus, epochs): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 186 |  |  |         env = self._open_lmdb(corpus == 'cached') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 187 |  |  |         with env.begin(write=True, buffers=True) as txn: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 188 |  |  |             seq = LMDBSequence(txn, batch_size=32) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 189 |  |  |             if corpus != 'cached': | 
            
                                                                                                            
                            
            
                                    
            
            
                | 190 |  |  |                 self._corpus_to_vectors(corpus, seq) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 191 |  |  |             else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 192 |  |  |                 self.info("Reusing cached training data from previous run.") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 193 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 194 |  |  |             # fit the model | 
            
                                                                                                            
                            
            
                                    
            
            
                | 195 |  |  |             self._model.fit(seq, verbose=True, epochs=epochs) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 196 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 197 |  |  |         annif.util.atomic_save( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 198 |  |  |             self._model, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 199 |  |  |             self.datadir, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 200 |  |  |             self.MODEL_FILE) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 201 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 202 |  |  |     def _learn(self, corpus, params): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 203 |  |  |         self.initialize() | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 204 |  |  |         self._fit_model(corpus, int(params['learn-epochs'])) | 
            
                                                        
            
                                    
            
            
                | 205 |  |  |  |