1
|
|
|
"""Language model based ensemble backend that combines results from multiple |
2
|
|
|
projects.""" |
3
|
|
|
|
4
|
|
|
from __future__ import annotations |
5
|
|
|
|
6
|
|
|
import json |
7
|
|
|
import os |
8
|
|
|
from typing import TYPE_CHECKING, Any |
9
|
|
|
|
10
|
|
|
import tiktoken |
11
|
|
|
from openai import AzureOpenAI, BadRequestError |
12
|
|
|
|
13
|
|
|
import annif.eval |
14
|
|
|
import annif.parallel |
15
|
|
|
import annif.util |
16
|
|
|
from annif.exception import NotSupportedException |
17
|
|
|
from annif.suggestion import SubjectSuggestion, SuggestionBatch |
18
|
|
|
|
19
|
|
|
from . import backend, ensemble |
20
|
|
|
|
21
|
|
|
# from openai import AsyncAzureOpenAI |
22
|
|
|
|
23
|
|
|
|
24
|
|
|
if TYPE_CHECKING: |
25
|
|
|
from annif.corpus.document import DocumentCorpus |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
class BaseLLMBackend(backend.AnnifBackend): |
29
|
|
|
# """Base class for TODO backends""" |
30
|
|
|
|
31
|
|
|
DEFAULT_PARAMETERS = { |
32
|
|
|
"api_version": "2024-10-21", |
33
|
|
|
"temperature": 0.0, |
34
|
|
|
"top_p": 1.0, |
35
|
|
|
"seed": 0, |
36
|
|
|
} |
37
|
|
|
|
38
|
|
|
def initialize(self, parallel: bool = False) -> None: |
39
|
|
|
super().initialize(parallel) |
40
|
|
|
self.client = AzureOpenAI( |
41
|
|
|
azure_endpoint=self.params["endpoint"], |
42
|
|
|
api_version=self.params["api_version"], |
43
|
|
|
api_key=os.getenv("AZURE_OPENAI_KEY"), |
44
|
|
|
) |
45
|
|
|
# TODO: Verify the connection? |
46
|
|
|
|
47
|
|
|
def default_params(self): |
48
|
|
|
params = backend.AnnifBackend.DEFAULT_PARAMETERS.copy() |
49
|
|
|
params.update(BaseLLMBackend.DEFAULT_PARAMETERS.copy()) |
50
|
|
|
params.update(self.DEFAULT_PARAMETERS) |
51
|
|
|
return params |
52
|
|
|
|
53
|
|
|
|
54
|
|
|
class LLMEnsembleBackend(BaseLLMBackend, ensemble.EnsembleBackend): |
55
|
|
|
# """TODO backend that combines results from multiple projects""" |
56
|
|
|
|
57
|
|
|
name = "llm_ensemble" |
58
|
|
|
|
59
|
|
|
DEFAULT_PARAMETERS = { |
60
|
|
|
"max_prompt_tokens": 127000, |
61
|
|
|
"llm_weight": 0.7, |
62
|
|
|
"labels_language": "en", |
63
|
|
|
"sources_limit": 10, |
64
|
|
|
} |
65
|
|
|
|
66
|
|
|
system_prompt = """ |
67
|
|
|
You will be given text and a list of keywords to describe it. Your task is to |
68
|
|
|
score the keywords with a value between 0.0 and 1.0. The score value |
69
|
|
|
should depend on how well the keyword represents the text: a perfect |
70
|
|
|
keyword should have score 1.0 and completely unrelated keyword score |
71
|
|
|
0.0. You must output JSON with keywords as field names and add their scores |
72
|
|
|
as field values. |
73
|
|
|
There must be the same number of objects in the JSON as there are lines in the |
74
|
|
|
intput keyword list; do not skip scoring any keywords. |
75
|
|
|
""" |
76
|
|
|
# Give zero or very low score to the keywords that do not describe the text. |
77
|
|
|
|
78
|
|
|
def get_hp_optimizer(self, corpus: DocumentCorpus, metric: str) -> None: |
79
|
|
|
raise NotSupportedException( |
80
|
|
|
"Hyperparameter optimization for LLM ensemble backend is not possible." |
81
|
|
|
) |
82
|
|
|
|
83
|
|
|
def _suggest_batch( |
84
|
|
|
self, texts: list[str], params: dict[str, Any] |
85
|
|
|
) -> SuggestionBatch: |
86
|
|
|
sources = annif.util.parse_sources(params["sources"]) |
87
|
|
|
llm_weight = float(params["llm_weight"]) |
88
|
|
|
if llm_weight < 0.0 or llm_weight > 1.0: |
89
|
|
|
raise ValueError("llm_weight must be between 0.0 and 1.0") |
90
|
|
|
|
91
|
|
|
batch_by_source = self._suggest_with_sources(texts, sources) |
92
|
|
|
merged_source_batch = self._merge_source_batches( |
93
|
|
|
batch_by_source, sources, {"limit": params["sources_limit"]} |
94
|
|
|
) |
95
|
|
|
|
96
|
|
|
# Score the suggestion labels with the LLM |
97
|
|
|
llm_results_batch = self._llm_suggest_batch(texts, merged_source_batch, params) |
98
|
|
|
|
99
|
|
|
batches = [merged_source_batch, llm_results_batch] |
100
|
|
|
weights = [1.0 - llm_weight, llm_weight] |
101
|
|
|
return SuggestionBatch.from_averaged(batches, weights).filter( |
102
|
|
|
limit=int(params["limit"]) |
103
|
|
|
) |
104
|
|
|
|
105
|
|
|
def _llm_suggest_batch( |
106
|
|
|
self, |
107
|
|
|
texts: list[str], |
108
|
|
|
suggestion_batch: SuggestionBatch, |
109
|
|
|
params: dict[str, Any], |
110
|
|
|
) -> SuggestionBatch: |
111
|
|
|
|
112
|
|
|
model = params["model"] |
113
|
|
|
encoding = tiktoken.encoding_for_model(model.rsplit("-", 1)[0]) |
114
|
|
|
max_prompt_tokens = int(params["max_prompt_tokens"]) |
115
|
|
|
|
116
|
|
|
labels_batch = self._get_labels_batch(suggestion_batch) |
117
|
|
|
|
118
|
|
|
llm_batch_suggestions = [] |
119
|
|
|
for text, labels in zip(texts, labels_batch): |
120
|
|
|
prompt = "Here are the keywords:\n" + "\n".join(labels) + "\n" * 3 |
121
|
|
|
text = self._truncate_text(text, encoding, max_prompt_tokens) |
122
|
|
|
prompt += "Here is the text:\n" + text + "\n" |
123
|
|
|
|
124
|
|
|
response = self._call_llm(prompt, model, params) |
125
|
|
|
try: |
126
|
|
|
llm_result = json.loads(response) |
127
|
|
|
except (TypeError, json.decoder.JSONDecodeError) as err: |
128
|
|
|
print(f"Error decoding JSON response from LLM: {response}") |
129
|
|
|
print(f"Error: {err}") |
130
|
|
|
llm_batch_suggestions.append( |
131
|
|
|
[SubjectSuggestion(subject_id=None, score=0.0) for _ in labels] |
132
|
|
|
) |
133
|
|
|
continue |
134
|
|
|
llm_batch_suggestions.append( |
135
|
|
|
[ |
136
|
|
|
( |
137
|
|
|
SubjectSuggestion( |
138
|
|
|
subject_id=self.project.subjects.by_label( |
139
|
|
|
llm_label, self.params["labels_language"] |
140
|
|
|
), |
141
|
|
|
score=score, |
142
|
|
|
) |
143
|
|
|
if llm_label in labels |
144
|
|
|
else SubjectSuggestion(subject_id=None, score=0.0) |
145
|
|
|
) |
146
|
|
|
for llm_label, score in llm_result.items() |
147
|
|
|
] |
148
|
|
|
) |
149
|
|
|
|
150
|
|
|
return SuggestionBatch.from_sequence( |
151
|
|
|
llm_batch_suggestions, |
152
|
|
|
self.project.subjects, |
153
|
|
|
) |
154
|
|
|
|
155
|
|
|
def _get_labels_batch(self, suggestion_batch: SuggestionBatch) -> list[list[str]]: |
156
|
|
|
return [ |
157
|
|
|
[ |
158
|
|
|
self.project.subjects[suggestion.subject_id].labels[ |
159
|
|
|
self.params["labels_language"] |
160
|
|
|
] |
161
|
|
|
for suggestion in suggestion_result |
162
|
|
|
] |
163
|
|
|
for suggestion_result in suggestion_batch |
164
|
|
|
] |
165
|
|
|
|
166
|
|
|
def _truncate_text(self, text, encoding, max_prompt_tokens): |
167
|
|
|
"""truncate text so it contains at most max_prompt_tokens according to the |
168
|
|
|
OpenAI tokenizer""" |
169
|
|
|
tokens = encoding.encode(text) |
170
|
|
|
return encoding.decode(tokens[:max_prompt_tokens]) |
171
|
|
|
|
172
|
|
|
def _call_llm(self, prompt: str, model: str, params: dict[str, Any]) -> str: |
173
|
|
|
temperature = float(params["temperature"]) |
174
|
|
|
top_p = float(params["top_p"]) |
175
|
|
|
seed = int(params["seed"]) |
176
|
|
|
|
177
|
|
|
messages = [ |
178
|
|
|
{"role": "system", "content": self.system_prompt}, |
179
|
|
|
{"role": "user", "content": prompt}, |
180
|
|
|
] |
181
|
|
|
try: |
182
|
|
|
completion = self.client.chat.completions.create( |
183
|
|
|
model=model, |
184
|
|
|
messages=messages, |
185
|
|
|
temperature=temperature, |
186
|
|
|
seed=seed, |
187
|
|
|
top_p=top_p, |
188
|
|
|
response_format={"type": "json_object"}, |
189
|
|
|
) |
190
|
|
|
|
191
|
|
|
completion = completion.choices[0].message.content |
192
|
|
|
return completion |
193
|
|
|
except BadRequestError as err: # openai.RateLimitError |
194
|
|
|
print(err) |
195
|
|
|
return "{}" |
196
|
|
|
|