1
|
|
|
"""Representing suggested subjects.""" |
2
|
|
|
|
3
|
|
|
import abc |
4
|
|
|
import collections |
5
|
|
|
import itertools |
6
|
|
|
|
7
|
|
|
import numpy as np |
8
|
|
|
from scipy.sparse import dok_array |
9
|
|
|
|
10
|
|
|
SubjectSuggestion = collections.namedtuple("SubjectSuggestion", "subject_id score") |
11
|
|
|
WeightedSuggestionsBatch = collections.namedtuple( |
12
|
|
|
"WeightedSuggestionsBatch", "hit_sets weight subjects" |
13
|
|
|
) |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
def filter_suggestion(preds, limit=None, threshold=0.0): |
17
|
|
|
"""filter a 2D sparse suggestion array (csr_array), retaining only the |
18
|
|
|
top K suggestions with a score above or equal to the threshold for each |
19
|
|
|
individual prediction; the rest will be left as zeros""" |
20
|
|
|
|
21
|
|
|
filtered = dok_array(preds.shape, dtype=np.float32) |
22
|
|
|
for row in range(preds.shape[0]): |
23
|
|
|
arow = preds.getrow(row) |
24
|
|
|
top_k = arow.data.argsort()[::-1] |
25
|
|
|
if limit is not None: |
26
|
|
|
top_k = top_k[:limit] |
27
|
|
|
for idx in top_k: |
28
|
|
|
val = arow.data[idx] |
29
|
|
|
if val < threshold: |
30
|
|
|
break |
31
|
|
|
filtered[row, arow.indices[idx]] = val |
32
|
|
|
return filtered.tocsr() |
33
|
|
|
|
34
|
|
|
|
35
|
|
|
class SuggestionResult(metaclass=abc.ABCMeta): |
36
|
|
|
"""Abstract base class for a set of hits returned by an analysis |
37
|
|
|
operation.""" |
38
|
|
|
|
39
|
|
|
@abc.abstractmethod |
40
|
|
|
def __iter__(self): |
41
|
|
|
"""Return the hits as an iterator that returns SubjectSuggestion objects, |
42
|
|
|
highest scores first.""" |
43
|
|
|
pass # pragma: no cover |
44
|
|
|
|
45
|
|
|
@abc.abstractmethod |
46
|
|
|
def as_vector(self, size, destination=None): |
47
|
|
|
"""Return the hits as a one-dimensional score vector of given size. |
48
|
|
|
If destination array is given (not None) it will be used, otherwise a |
49
|
|
|
new array will be created.""" |
50
|
|
|
pass # pragma: no cover |
51
|
|
|
|
52
|
|
|
@abc.abstractmethod |
53
|
|
|
def __len__(self): |
54
|
|
|
"""Return the number of hits with non-zero scores.""" |
55
|
|
|
pass # pragma: no cover |
56
|
|
|
|
57
|
|
|
|
58
|
|
|
class VectorSuggestionResult(SuggestionResult): |
59
|
|
|
"""SuggestionResult implementation based primarily on NumPy vectors.""" |
60
|
|
|
|
61
|
|
|
def __init__(self, vector): |
62
|
|
|
vector_f32 = vector.astype(np.float32) |
63
|
|
|
# limit scores to the range 0.0 .. 1.0 |
64
|
|
|
self._vector = np.minimum(np.maximum(vector_f32, 0.0), 1.0) |
65
|
|
|
self._subject_order = None |
66
|
|
|
self._lsr = None |
67
|
|
|
|
68
|
|
|
def _vector_to_list_suggestion(self): |
69
|
|
|
hits = [] |
70
|
|
|
for subject_id in self.subject_order: |
71
|
|
|
score = self._vector[subject_id] |
72
|
|
|
if score <= 0.0: |
73
|
|
|
break # we can skip the remaining ones |
74
|
|
|
hits.append(SubjectSuggestion(subject_id=subject_id, score=float(score))) |
75
|
|
|
return ListSuggestionResult(hits) |
76
|
|
|
|
77
|
|
|
@property |
78
|
|
|
def subject_order(self): |
79
|
|
|
if self._subject_order is None: |
80
|
|
|
self._subject_order = np.argsort(self._vector)[::-1] |
81
|
|
|
return self._subject_order |
82
|
|
|
|
83
|
|
|
def __iter__(self): |
84
|
|
|
if self._lsr is None: |
85
|
|
|
self._lsr = self._vector_to_list_suggestion() |
86
|
|
|
return iter(self._lsr) |
87
|
|
|
|
88
|
|
|
def as_vector(self, size, destination=None): |
89
|
|
|
if destination is not None: |
90
|
|
|
np.copyto(destination, self._vector) |
91
|
|
|
return destination |
92
|
|
|
return self._vector |
93
|
|
|
|
94
|
|
|
def __len__(self): |
95
|
|
|
return (self._vector > 0.0).sum() |
96
|
|
|
|
97
|
|
|
|
98
|
|
|
class ListSuggestionResult(SuggestionResult): |
99
|
|
|
"""SuggestionResult implementation based primarily on lists of hits.""" |
100
|
|
|
|
101
|
|
|
def __init__(self, hits): |
102
|
|
|
self._list = [self._enforce_score_range(hit) for hit in hits if hit.score > 0.0] |
103
|
|
|
self._vector = None |
104
|
|
|
|
105
|
|
|
@staticmethod |
106
|
|
|
def _enforce_score_range(hit): |
107
|
|
|
if hit.score > 1.0: |
108
|
|
|
return hit._replace(score=1.0) |
109
|
|
|
return hit |
110
|
|
|
|
111
|
|
|
def _list_to_vector(self, size, destination): |
112
|
|
|
if destination is None: |
113
|
|
|
destination = np.zeros(size, dtype=np.float32) |
114
|
|
|
|
115
|
|
|
for hit in self._list: |
116
|
|
|
if hit.subject_id is not None: |
117
|
|
|
destination[hit.subject_id] = hit.score |
118
|
|
|
return destination |
119
|
|
|
|
120
|
|
|
def __iter__(self): |
121
|
|
|
return iter(self._list) |
122
|
|
|
|
123
|
|
|
def as_vector(self, size, destination=None): |
124
|
|
|
if self._vector is None: |
125
|
|
|
self._vector = self._list_to_vector(size, destination) |
126
|
|
|
return self._vector |
127
|
|
|
|
128
|
|
|
def __len__(self): |
129
|
|
|
return len(self._list) |
130
|
|
|
|
131
|
|
|
|
132
|
|
|
class SparseSuggestionResult(SuggestionResult): |
133
|
|
|
"""SuggestionResult implementation backed by a single row of a sparse array.""" |
134
|
|
|
|
135
|
|
|
def __init__(self, array, idx): |
136
|
|
|
self._array = array |
137
|
|
|
self._idx = idx |
138
|
|
|
|
139
|
|
|
def __iter__(self): |
140
|
|
|
_, cols = self._array[[self._idx], :].nonzero() |
141
|
|
|
suggestions = [ |
142
|
|
|
SubjectSuggestion(subject_id=col, score=float(self._array[self._idx, col])) |
143
|
|
|
for col in cols |
144
|
|
|
] |
145
|
|
|
return iter( |
146
|
|
|
sorted(suggestions, key=lambda suggestion: suggestion.score, reverse=True) |
147
|
|
|
) |
148
|
|
|
|
149
|
|
|
def as_vector(self, size, destination=None): |
150
|
|
|
if destination is not None: |
151
|
|
|
print("as_vector called with destination not None") |
152
|
|
|
return None |
153
|
|
|
return self._array[[self._idx], :].toarray()[0] |
154
|
|
|
|
155
|
|
|
def __len__(self): |
156
|
|
|
_, cols = self._array[[self._idx], :].nonzero() |
157
|
|
|
return len(cols) |
158
|
|
|
|
159
|
|
|
|
160
|
|
|
class SuggestionBatch: |
161
|
|
|
"""Subject suggestions for a batch of documents.""" |
162
|
|
|
|
163
|
|
|
def __init__(self, array): |
164
|
|
|
"""Create a new SuggestionBatch from a csr_array""" |
165
|
|
|
self.array = array |
166
|
|
|
|
167
|
|
|
@classmethod |
168
|
|
|
def from_sequence(cls, suggestion_results, vocab_size, limit=None): |
169
|
|
|
"""Create a new SuggestionBatch from a sequence of SuggestionResult objects.""" |
170
|
|
|
|
171
|
|
|
# create a dok_array for fast construction |
172
|
|
|
ar = dok_array((len(suggestion_results), vocab_size), dtype=np.float32) |
173
|
|
|
for idx, result in enumerate(suggestion_results): |
174
|
|
|
for suggestion in itertools.islice(result, limit): |
175
|
|
|
ar[idx, suggestion.subject_id] = suggestion.score |
176
|
|
|
return cls(ar.tocsr()) |
177
|
|
|
|
178
|
|
|
def filter(self, limit=None, threshold=0.0): |
179
|
|
|
"""Return a subset of the hits, filtered by the given limit and |
180
|
|
|
score threshold, as another SuggestionBatch object.""" |
181
|
|
|
|
182
|
|
|
return SuggestionBatch(filter_suggestion(self.array, limit, threshold)) |
183
|
|
|
|
184
|
|
|
def __getitem__(self, idx): |
185
|
|
|
if idx < 0 or idx >= len(self): |
186
|
|
|
raise IndexError |
187
|
|
|
return SparseSuggestionResult(self.array, idx) |
188
|
|
|
|
189
|
|
|
def __len__(self): |
190
|
|
|
return self.array.shape[0] |
191
|
|
|
|
192
|
|
|
|
193
|
|
|
class SuggestionResults: |
194
|
|
|
"""Subject suggestions for a potentially very large number of documents.""" |
195
|
|
|
|
196
|
|
|
def __init__(self, batches): |
197
|
|
|
"""Initialize a new SuggestionResults from an iterable that provides |
198
|
|
|
SuggestionBatch objects.""" |
199
|
|
|
|
200
|
|
|
self.batches = batches |
201
|
|
|
|
202
|
|
|
def filter(self, limit=None, threshold=0.0): |
203
|
|
|
"""Return a view of these suggestions, filtered by the given limit |
204
|
|
|
and/or threshold, as another SuggestionResults object.""" |
205
|
|
|
|
206
|
|
|
return SuggestionResults( |
207
|
|
|
(batch.filter(limit, threshold) for batch in self.batches) |
208
|
|
|
) |
209
|
|
|
|
210
|
|
|
def __iter__(self): |
211
|
|
|
return iter(itertools.chain.from_iterable(self.batches)) |
212
|
|
|
|