|
1
|
|
|
"""TODO""" |
|
2
|
|
|
|
|
3
|
|
|
from __future__ import annotations |
|
4
|
|
|
|
|
5
|
|
|
import json |
|
6
|
|
|
import os |
|
7
|
|
|
import re |
|
8
|
|
|
from collections import defaultdict |
|
9
|
|
|
from typing import TYPE_CHECKING, Any |
|
10
|
|
|
|
|
11
|
|
|
import joblib |
|
12
|
|
|
import tiktoken |
|
13
|
|
|
from openai import AzureOpenAI, BadRequestError |
|
14
|
|
|
from rdflib.namespace import SKOS |
|
15
|
|
|
|
|
16
|
|
|
import annif.eval |
|
17
|
|
|
import annif.parallel |
|
18
|
|
|
import annif.util |
|
19
|
|
|
from annif.exception import ConfigurationException, NotSupportedException |
|
20
|
|
|
from annif.suggestion import SubjectSuggestion, SuggestionBatch |
|
21
|
|
|
|
|
22
|
|
|
from . import backend |
|
23
|
|
|
|
|
24
|
|
|
# from openai import AsyncAzureOpenAI |
|
25
|
|
|
|
|
26
|
|
|
|
|
27
|
|
|
if TYPE_CHECKING: |
|
28
|
|
|
from datetime import datetime |
|
29
|
|
|
|
|
30
|
|
|
from rdflib.term import URIRef |
|
31
|
|
|
|
|
32
|
|
|
from annif.corpus.document import DocumentCorpus |
|
33
|
|
|
|
|
34
|
|
|
|
|
35
|
|
|
class BaseLLMBackend(backend.AnnifBackend): |
|
36
|
|
|
# """Base class for TODO backends""" |
|
37
|
|
|
|
|
38
|
|
|
def initialize(self, parallel: bool = False) -> None: |
|
39
|
|
|
# initialize all the source projects |
|
40
|
|
|
params = self._get_backend_params(None) |
|
41
|
|
|
|
|
42
|
|
|
# self.client = AsyncAzureOpenAI( |
|
43
|
|
|
self.client = AzureOpenAI( |
|
44
|
|
|
azure_endpoint=params["endpoint"], |
|
45
|
|
|
api_key=os.getenv("AZURE_OPENAI_API_KEY"), |
|
46
|
|
|
api_version="2024-02-15-preview", |
|
47
|
|
|
) |
|
48
|
|
|
self._initialize_index() |
|
49
|
|
|
|
|
50
|
|
|
|
|
51
|
|
|
class LLMBackend(BaseLLMBackend, backend.AnnifBackend): |
|
52
|
|
|
# """TODO backend that combines results from multiple projects""" |
|
53
|
|
|
|
|
54
|
|
|
name = "llm" |
|
55
|
|
|
# defaults for uninitialized instances |
|
56
|
|
|
_index = None |
|
57
|
|
|
INDEX_FILE = "llm-index" |
|
58
|
|
|
|
|
59
|
|
|
DEFAULT_PARAMETERS = { |
|
60
|
|
|
"label_types": ["prefLabel", "altLabel"], |
|
61
|
|
|
"remove_parentheses": False, |
|
62
|
|
|
} |
|
63
|
|
|
|
|
64
|
|
|
system_prompt = """ |
|
65
|
|
|
You are a professional subject indexer. |
|
66
|
|
|
You will be given a text. Your task is to give a list of keywords to describe |
|
67
|
|
|
the text along scores for the keywords with a value between 0.0 and 1.0. The |
|
68
|
|
|
score value should depend on how well the keyword represents the text: a perfect |
|
69
|
|
|
keyword should have score 1.0 and completely unrelated keyword score |
|
70
|
|
|
0.0. You must output JSON with keywords as field names and add their scores |
|
71
|
|
|
as field values. |
|
72
|
|
|
""" |
|
73
|
|
|
# Give zero or very low score to the keywords that do not describe the text. |
|
74
|
|
|
|
|
75
|
|
|
@property |
|
76
|
|
|
def is_trained(self) -> bool: |
|
77
|
|
|
True |
|
78
|
|
|
|
|
79
|
|
|
@property |
|
80
|
|
|
def modification_time(self) -> datetime | None: |
|
81
|
|
|
None |
|
82
|
|
|
|
|
83
|
|
|
def _train(self, corpus: DocumentCorpus, params: dict[str, Any], jobs: int = 0): |
|
84
|
|
|
raise NotSupportedException("Training LLM backend is not possible.") |
|
85
|
|
|
|
|
86
|
|
|
@property |
|
87
|
|
|
def label_types(self) -> list[URIRef]: |
|
88
|
|
|
if isinstance(self.params["label_types"], str): # Label types set by user |
|
89
|
|
|
label_types = [lt.strip() for lt in self.params["label_types"].split(",")] |
|
90
|
|
|
self._validate_label_types(label_types) |
|
91
|
|
|
else: |
|
92
|
|
|
label_types = self.params["label_types"] # The defaults |
|
93
|
|
|
return [getattr(SKOS, lt) for lt in label_types] |
|
94
|
|
|
|
|
95
|
|
|
def _validate_label_types(self, label_types: list[str]) -> None: |
|
96
|
|
|
for lt in label_types: |
|
97
|
|
|
if lt not in ("prefLabel", "altLabel", "hiddenLabel"): |
|
98
|
|
|
raise ConfigurationException( |
|
99
|
|
|
f"invalid label type {lt}", backend_id=self.backend_id |
|
100
|
|
|
) |
|
101
|
|
|
|
|
102
|
|
View Code Duplication |
def _initialize_index(self) -> None: |
|
|
|
|
|
|
103
|
|
|
if self._index is None: |
|
104
|
|
|
path = os.path.join(self.datadir, self.INDEX_FILE) |
|
105
|
|
|
if os.path.exists(path): |
|
106
|
|
|
self._index = joblib.load(path) |
|
107
|
|
|
self.debug(f"Loaded index from {path} with {len(self._index)} labels") |
|
108
|
|
|
else: |
|
109
|
|
|
self.info("Creating index") |
|
110
|
|
|
self._index = self._create_index() |
|
111
|
|
|
self._save_index(path) |
|
112
|
|
|
self.info(f"Created index with {len(self._index)} labels") |
|
113
|
|
|
|
|
114
|
|
|
def _save_index(self, path: str) -> None: |
|
115
|
|
|
annif.util.atomic_save( |
|
116
|
|
|
self._index, self.datadir, self.INDEX_FILE, method=joblib.dump |
|
117
|
|
|
) |
|
118
|
|
|
|
|
119
|
|
View Code Duplication |
def _create_index(self) -> dict[str, set[str]]: |
|
|
|
|
|
|
120
|
|
|
index = defaultdict(set) |
|
121
|
|
|
skos_vocab = self.project.vocab.skos |
|
122
|
|
|
for concept in skos_vocab.concepts: |
|
123
|
|
|
uri = str(concept) |
|
124
|
|
|
labels_by_lang = skos_vocab.get_concept_labels(concept, self.label_types) |
|
125
|
|
|
for label in labels_by_lang[self.params["language"]]: |
|
126
|
|
|
# label = self._normalize_label(label) |
|
127
|
|
|
index[label].add(uri) |
|
128
|
|
|
index.pop("", None) # Remove possible empty string entry |
|
129
|
|
|
return dict(index) |
|
130
|
|
|
|
|
131
|
|
|
def _suggest(self, text: str, params: dict[str, Any]) -> SuggestionBatch: |
|
132
|
|
|
model = params["model"] |
|
133
|
|
|
limit = int(params["limit"]) |
|
134
|
|
|
|
|
135
|
|
|
encoding = tiktoken.encoding_for_model(model.rsplit("-", 1)[0]) |
|
136
|
|
|
|
|
137
|
|
|
text = self._truncate_text(text, encoding) |
|
138
|
|
|
prompt = "Here is the text:\n" + text + "\n" |
|
139
|
|
|
|
|
140
|
|
|
answer = self._call_llm(prompt, model) |
|
141
|
|
|
try: |
|
142
|
|
|
llm_result = json.loads(answer) |
|
143
|
|
|
except (TypeError, json.decoder.JSONDecodeError) as err: |
|
144
|
|
|
print(err) |
|
145
|
|
|
llm_result = dict() |
|
146
|
|
|
|
|
147
|
|
|
keyphrases = [(kp, score) for kp, score in llm_result.items()] |
|
148
|
|
|
suggestions = self._keyphrases2suggestions(keyphrases) |
|
149
|
|
|
|
|
150
|
|
|
subject_suggestions = [ |
|
151
|
|
|
SubjectSuggestion(subject_id=self.project.subjects.by_uri(uri), score=score) |
|
152
|
|
|
for uri, score in suggestions[:limit] |
|
153
|
|
|
if score > 0.0 |
|
154
|
|
|
] |
|
155
|
|
|
return subject_suggestions |
|
156
|
|
|
|
|
157
|
|
|
def _truncate_text(self, text, encoding): |
|
158
|
|
|
"""truncate text so it contains at most MAX_PROMPT_TOKENS according to the |
|
159
|
|
|
OpenAI tokenizer""" |
|
160
|
|
|
|
|
161
|
|
|
MAX_PROMPT_TOKENS = 14000 |
|
162
|
|
|
tokens = encoding.encode(text) |
|
163
|
|
|
return encoding.decode(tokens[:MAX_PROMPT_TOKENS]) |
|
164
|
|
|
|
|
165
|
|
|
def _call_llm(self, prompt: str, model: str): |
|
166
|
|
|
messages = [ |
|
167
|
|
|
{"role": "system", "content": self.system_prompt}, |
|
168
|
|
|
{"role": "user", "content": prompt}, |
|
169
|
|
|
] |
|
170
|
|
|
# print(prompt) #[-10000:]) |
|
171
|
|
|
try: |
|
172
|
|
|
completion = self.client.chat.completions.create( |
|
173
|
|
|
model=model, |
|
174
|
|
|
messages=messages, |
|
175
|
|
|
temperature=0.0, |
|
176
|
|
|
seed=0, |
|
177
|
|
|
max_tokens=1800, |
|
178
|
|
|
top_p=0.95, |
|
179
|
|
|
frequency_penalty=0, |
|
180
|
|
|
presence_penalty=0, |
|
181
|
|
|
stop=None, |
|
182
|
|
|
response_format={"type": "json_object"}, |
|
183
|
|
|
) |
|
184
|
|
|
|
|
185
|
|
|
completion = completion.choices[0].message.content |
|
186
|
|
|
return completion |
|
187
|
|
|
except BadRequestError as err: # openai.RateLimitError |
|
188
|
|
|
print(err) |
|
189
|
|
|
return "{}" |
|
190
|
|
|
|
|
191
|
|
View Code Duplication |
def _keyphrases2suggestions( |
|
|
|
|
|
|
192
|
|
|
self, keyphrases: list[tuple[str, float]] |
|
193
|
|
|
) -> list[tuple[str, float]]: |
|
194
|
|
|
suggestions = [] |
|
195
|
|
|
not_matched = [] |
|
196
|
|
|
for kp, score in keyphrases: |
|
197
|
|
|
uris = self._keyphrase2uris(kp) |
|
198
|
|
|
for uri in uris: |
|
199
|
|
|
suggestions.append((uri, score)) |
|
200
|
|
|
if not uris: |
|
201
|
|
|
not_matched.append((kp, score)) |
|
202
|
|
|
# Remove duplicate uris, conflating the scores |
|
203
|
|
|
suggestions = self._combine_suggestions(suggestions) |
|
204
|
|
|
self.debug( |
|
205
|
|
|
"Keyphrases not matched:\n" |
|
206
|
|
|
+ "\t".join( |
|
207
|
|
|
[ |
|
208
|
|
|
kp[0] + " " + str(kp[1]) |
|
209
|
|
|
for kp in sorted(not_matched, reverse=True, key=lambda kp: kp[1]) |
|
210
|
|
|
] |
|
211
|
|
|
) |
|
212
|
|
|
) |
|
213
|
|
|
return suggestions |
|
214
|
|
|
|
|
215
|
|
|
def _keyphrase2uris(self, keyphrase: str) -> set[str]: |
|
216
|
|
|
keyphrase = self._normalize_phrase(keyphrase) |
|
217
|
|
|
keyphrase = self._sort_phrase(keyphrase) |
|
218
|
|
|
return self._index.get(keyphrase, []) |
|
219
|
|
|
|
|
220
|
|
|
def _normalize_label(self, label: str) -> str: |
|
221
|
|
|
label = str(label) |
|
222
|
|
|
if annif.util.boolean(self.params["remove_parentheses"]): |
|
223
|
|
|
label = re.sub(r" \(.*\)", "", label) |
|
224
|
|
|
normalized_label = self._normalize_phrase(label) |
|
225
|
|
|
return self._sort_phrase(normalized_label) |
|
226
|
|
|
|
|
227
|
|
|
def _normalize_phrase(self, phrase: str) -> str: |
|
228
|
|
|
return " ".join(self.project.analyzer.tokenize_words(phrase, filter=False)) |
|
229
|
|
|
|
|
230
|
|
|
def _sort_phrase(self, phrase: str) -> str: |
|
231
|
|
|
words = phrase.split() |
|
232
|
|
|
return " ".join(sorted(words)) |
|
233
|
|
|
|
|
234
|
|
View Code Duplication |
def _combine_suggestions( |
|
|
|
|
|
|
235
|
|
|
self, suggestions: list[tuple[str, float]] |
|
236
|
|
|
) -> list[tuple[str, float]]: |
|
237
|
|
|
combined_suggestions = {} |
|
238
|
|
|
for uri, score in suggestions: |
|
239
|
|
|
if uri not in combined_suggestions: |
|
240
|
|
|
combined_suggestions[uri] = score |
|
241
|
|
|
else: |
|
242
|
|
|
old_score = combined_suggestions[uri] |
|
243
|
|
|
combined_suggestions[uri] = self._combine_scores(score, old_score) |
|
244
|
|
|
return list(combined_suggestions.items()) |
|
245
|
|
|
|
|
246
|
|
|
def _combine_scores(self, score1: float, score2: float) -> float: |
|
247
|
|
|
# The result is never smaller than the greater input |
|
248
|
|
|
score1 = score1 / 2 + 0.5 |
|
249
|
|
|
score2 = score2 / 2 + 0.5 |
|
250
|
|
|
confl = score1 * score2 / (score1 * score2 + (1 - score1) * (1 - score2)) |
|
251
|
|
|
return (confl - 0.5) * 2 |
|
252
|
|
|
|