| 
                    1
                 | 
                                    
                                                     | 
                
                 | 
                """Evaluation metrics for Annif"""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    2
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    3
                 | 
                                    
                                                     | 
                
                 | 
                import warnings  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    4
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    5
                 | 
                                    
                                                     | 
                
                 | 
                import numpy as np  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    6
                 | 
                                    
                                                     | 
                
                 | 
                import scipy.sparse  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    7
                 | 
                                    
                                                     | 
                
                 | 
                from sklearn.metrics import f1_score, precision_score, recall_score  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    8
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    9
                 | 
                                    
                                                     | 
                
                 | 
                from annif.exception import NotSupportedException  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    10
                 | 
                                    
                                                     | 
                
                 | 
                from annif.suggestion import SuggestionBatch, filter_suggestion  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    11
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    12
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    13
                 | 
                                    
                                                     | 
                
                 | 
                def true_positives(y_true, y_pred):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    14
                 | 
                                    
                                                     | 
                
                 | 
                    """calculate the number of true positives using bitwise operations,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    15
                 | 
                                    
                                                     | 
                
                 | 
                    emulating the way sklearn evaluation metric functions work"""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    16
                 | 
                                    
                                                     | 
                
                 | 
                    return int((y_true.multiply(y_pred)).sum())  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    17
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    18
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    19
                 | 
                                    
                                                     | 
                
                 | 
                def false_positives(y_true, y_pred):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    20
                 | 
                                    
                                                     | 
                
                 | 
                    """calculate the number of false positives using bitwise operations,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    21
                 | 
                                    
                                                     | 
                
                 | 
                    emulating the way sklearn evaluation metric functions work"""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    22
                 | 
                                    
                                                     | 
                
                 | 
                    return int((y_true < y_pred).sum())  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    23
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    24
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    25
                 | 
                                    
                                                     | 
                
                 | 
                def false_negatives(y_true, y_pred):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    26
                 | 
                                    
                                                     | 
                
                 | 
                    """calculate the number of false negatives using bitwise operations,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    27
                 | 
                                    
                                                     | 
                
                 | 
                    emulating the way sklearn evaluation metric functions work"""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    28
                 | 
                                    
                                                     | 
                
                 | 
                    return int((y_true > y_pred).sum())  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    29
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    30
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    31
                 | 
                                    
                                                     | 
                
                 | 
                def dcg_score(y_true, y_pred, limit=None):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    32
                 | 
                                    
                                                     | 
                
                 | 
                    """return the discounted cumulative gain (DCG) score for the selected  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    33
                 | 
                                    
                                                     | 
                
                 | 
                    labels vs. relevant labels"""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    34
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    35
                 | 
                                    
                                                     | 
                
                 | 
                    n_pred = y_pred.count_nonzero()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    36
                 | 
                                    
                                                     | 
                
                 | 
                    if limit is not None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    37
                 | 
                                    
                                                     | 
                
                 | 
                        n_pred = min(limit, n_pred)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    38
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    39
                 | 
                                    
                                                     | 
                
                 | 
                    top_k = y_pred.data.argsort()[-n_pred:][::-1]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    40
                 | 
                                    
                                                     | 
                
                 | 
                    order = y_pred.indices[top_k]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    41
                 | 
                                    
                                                     | 
                
                 | 
                    gain = y_true[:, order]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    42
                 | 
                                    
                                                     | 
                
                 | 
                    discount = np.log2(np.arange(1, n_pred + 1) + 1)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    43
                 | 
                                    
                                                     | 
                
                 | 
                    return (gain / discount).sum()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    44
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    45
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    46
                 | 
                                    
                                                     | 
                
                 | 
                def ndcg_score(y_true, y_pred, limit=None):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    47
                 | 
                                    
                                                     | 
                
                 | 
                    """return the normalized discounted cumulative gain (nDCG) score for the  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    48
                 | 
                                    
                                                     | 
                
                 | 
                    selected labels vs. relevant labels"""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    49
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    50
                 | 
                                    
                                                     | 
                
                 | 
                    scores = np.ones(y_true.shape[0], dtype=np.float32)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    51
                 | 
                                    
                                                     | 
                
                 | 
                    for i in range(y_true.shape[0]):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    52
                 | 
                                    
                                                     | 
                
                 | 
                        true = y_true.getrow(i)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    53
                 | 
                                    
                                                     | 
                
                 | 
                        idcg = dcg_score(true, true, limit)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    54
                 | 
                                    
                                                     | 
                
                 | 
                        if idcg > 0:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    55
                 | 
                                    
                                                     | 
                
                 | 
                            pred = y_pred.getrow(i)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    56
                 | 
                                    
                                                     | 
                
                 | 
                            dcg = dcg_score(true, pred, limit)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    57
                 | 
                                    
                                                     | 
                
                 | 
                            scores[i] = dcg / idcg  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    58
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    59
                 | 
                                    
                                                     | 
                
                 | 
                    return float(scores.mean())  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    60
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    61
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    62
                 | 
                                    
                                                     | 
                
                 | 
                class EvaluationBatch:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    63
                 | 
                                    
                                                     | 
                
                 | 
                    """A class for evaluating batches of results using all available metrics.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    64
                 | 
                                    
                                                     | 
                
                 | 
                    The evaluate() method is called once per document in the batch or evaluate_many()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    65
                 | 
                                    
                                                     | 
                
                 | 
                    for a list of documents of the batch. Final results can be queried using the  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    66
                 | 
                                    
                                                     | 
                
                 | 
                    results() method."""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    67
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    68
                 | 
                                    
                                                     | 
                
                 | 
                    def __init__(self, subject_index):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    69
                 | 
                                    
                                                     | 
                
                 | 
                        self._subject_index = subject_index  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    70
                 | 
                                    
                                                     | 
                
                 | 
                        self._suggestion_arrays = []  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    71
                 | 
                                    
                                                     | 
                
                 | 
                        self._gold_subject_arrays = []  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    72
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    73
                 | 
                                    
                                                     | 
                
                 | 
                    def evaluate_many(self, suggestion_batch, gold_subject_batch):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    74
                 | 
                                    
                                                     | 
                
                 | 
                        if not isinstance(suggestion_batch, SuggestionBatch):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    75
                 | 
                                    
                                                     | 
                
                 | 
                            suggestion_batch = SuggestionBatch.from_sequence(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    76
                 | 
                                    
                                                     | 
                
                 | 
                                suggestion_batch, self._subject_index  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    77
                 | 
                                    
                                                     | 
                
                 | 
                            )  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    78
                 | 
                                    
                                                     | 
                
                 | 
                        self._suggestion_arrays.append(suggestion_batch.array)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    79
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    80
                 | 
                                    
                                                     | 
                
                 | 
                        # convert gold_subject_batch to sparse matrix  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    81
                 | 
                                    
                                                     | 
                
                 | 
                        ar = scipy.sparse.dok_array(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    82
                 | 
                                    
                                                     | 
                
                 | 
                            (len(gold_subject_batch), len(self._subject_index)), dtype=bool  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    83
                 | 
                                    
                                                     | 
                
                 | 
                        )  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    84
                 | 
                                    
                                                     | 
                
                 | 
                        for idx, subject_set in enumerate(gold_subject_batch):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    85
                 | 
                                    
                                                     | 
                
                 | 
                            for subject_id in subject_set:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    86
                 | 
                                    
                                                     | 
                
                 | 
                                ar[idx, subject_id] = True  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    87
                 | 
                                    
                                                     | 
                
                 | 
                        self._gold_subject_arrays.append(ar.tocsr())  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    88
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    89
                 | 
                                    
                                                     | 
                
                 | 
                    def _evaluate_samples(self, y_true, y_pred, metrics=[]):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    90
                 | 
                                    
                                                     | 
                
                 | 
                        y_pred_binary = y_pred > 0.0  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    91
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    92
                 | 
                                    
                                                     | 
                
                 | 
                        # define the available metrics as lazy lambda functions  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    93
                 | 
                                    
                                                     | 
                
                 | 
                        # so we can execute only the ones actually requested  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    94
                 | 
                                    
                                                     | 
                
                 | 
                        all_metrics = { | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    95
                 | 
                                    
                                                     | 
                
                 | 
                            "Precision (doc avg)": lambda: precision_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    96
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, y_pred_binary, average="samples"  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    97
                 | 
                                    
                                                     | 
                
                 | 
                            ),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    98
                 | 
                                    
                                                     | 
                
                 | 
                            "Recall (doc avg)": lambda: recall_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    99
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, y_pred_binary, average="samples"  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    100
                 | 
                                    
                                                     | 
                
                 | 
                            ),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    101
                 | 
                                    
                                                     | 
                
                 | 
                            "F1 score (doc avg)": lambda: f1_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    102
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, y_pred_binary, average="samples"  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    103
                 | 
                                    
                                                     | 
                
                 | 
                            ),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    104
                 | 
                                    
                                                     | 
                
                 | 
                            "Precision (subj avg)": lambda: precision_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    105
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, y_pred_binary, average="macro"  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    106
                 | 
                                    
                                                     | 
                
                 | 
                            ),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    107
                 | 
                                    
                                                     | 
                
                 | 
                            "Recall (subj avg)": lambda: recall_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    108
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, y_pred_binary, average="macro"  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    109
                 | 
                                    
                                                     | 
                
                 | 
                            ),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    110
                 | 
                                    
                                                     | 
                
                 | 
                            "F1 score (subj avg)": lambda: f1_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    111
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, y_pred_binary, average="macro"  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    112
                 | 
                                    
                                                     | 
                
                 | 
                            ),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    113
                 | 
                                    
                                                     | 
                
                 | 
                            "Precision (weighted subj avg)": lambda: precision_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    114
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, y_pred_binary, average="weighted"  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    115
                 | 
                                    
                                                     | 
                
                 | 
                            ),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    116
                 | 
                                    
                                                     | 
                
                 | 
                            "Recall (weighted subj avg)": lambda: recall_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    117
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, y_pred_binary, average="weighted"  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    118
                 | 
                                    
                                                     | 
                
                 | 
                            ),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    119
                 | 
                                    
                                                     | 
                
                 | 
                            "F1 score (weighted subj avg)": lambda: f1_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    120
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, y_pred_binary, average="weighted"  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    121
                 | 
                                    
                                                     | 
                
                 | 
                            ),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    122
                 | 
                                    
                                                     | 
                
                 | 
                            "Precision (microavg)": lambda: precision_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    123
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, y_pred_binary, average="micro"  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    124
                 | 
                                    
                                                     | 
                
                 | 
                            ),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    125
                 | 
                                    
                                                     | 
                
                 | 
                            "Recall (microavg)": lambda: recall_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    126
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, y_pred_binary, average="micro"  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    127
                 | 
                                    
                                                     | 
                
                 | 
                            ),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    128
                 | 
                                    
                                                     | 
                
                 | 
                            "F1 score (microavg)": lambda: f1_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    129
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, y_pred_binary, average="micro"  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    130
                 | 
                                    
                                                     | 
                
                 | 
                            ),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    131
                 | 
                                    
                                                     | 
                
                 | 
                            "F1@5": lambda: f1_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    132
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, filter_suggestion(y_pred, 5) > 0.0, average="samples"  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    133
                 | 
                                    
                                                     | 
                
                 | 
                            ),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    134
                 | 
                                    
                                                     | 
                
                 | 
                            "NDCG": lambda: ndcg_score(y_true, y_pred),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    135
                 | 
                                    
                                                     | 
                
                 | 
                            "NDCG@5": lambda: ndcg_score(y_true, y_pred, limit=5),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    136
                 | 
                                    
                                                     | 
                
                 | 
                            "NDCG@10": lambda: ndcg_score(y_true, y_pred, limit=10),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    137
                 | 
                                    
                                                     | 
                
                 | 
                            "Precision@1": lambda: precision_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    138
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, filter_suggestion(y_pred, 1) > 0.0, average="samples"  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    139
                 | 
                                    
                                                     | 
                
                 | 
                            ),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    140
                 | 
                                    
                                                     | 
                
                 | 
                            "Precision@3": lambda: precision_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    141
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, filter_suggestion(y_pred, 3) > 0.0, average="samples"  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    142
                 | 
                                    
                                                     | 
                
                 | 
                            ),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    143
                 | 
                                    
                                                     | 
                
                 | 
                            "Precision@5": lambda: precision_score(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    144
                 | 
                                    
                                                     | 
                
                 | 
                                y_true, filter_suggestion(y_pred, 5) > 0.0, average="samples"  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    145
                 | 
                                    
                                                     | 
                
                 | 
                            ),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    146
                 | 
                                    
                                                     | 
                
                 | 
                            "True positives": lambda: true_positives(y_true, y_pred_binary),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    147
                 | 
                                    
                                                     | 
                
                 | 
                            "False positives": lambda: false_positives(y_true, y_pred_binary),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    148
                 | 
                                    
                                                     | 
                
                 | 
                            "False negatives": lambda: false_negatives(y_true, y_pred_binary),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    149
                 | 
                                    
                                                     | 
                
                 | 
                        }  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    150
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    151
                 | 
                                    
                                                     | 
                
                 | 
                        if not metrics:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    152
                 | 
                                    
                                                     | 
                
                 | 
                            metrics = all_metrics.keys()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    153
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    154
                 | 
                                    
                                                     | 
                
                 | 
                        with warnings.catch_warnings():  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    155
                 | 
                                    
                                                     | 
                
                 | 
                            warnings.simplefilter("ignore") | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    156
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    157
                 | 
                                    
                                                     | 
                
                 | 
                            return {metric: all_metrics[metric]() for metric in metrics} | 
            
            
                                                                                                            
                                                                
            
                                    
            
            
                | 
                    158
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    159
                 | 
                                    
                                                     | 
                
                 | 
                    def _result_per_subject_header(self, results_file):  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    160
                 | 
                                    
                                                     | 
                
                 | 
                        print(  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    161
                 | 
                                    
                                                     | 
                
                 | 
                            "\t".join(  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    162
                 | 
                                    
                                                     | 
                
                 | 
                                [  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    163
                 | 
                                    
                                                     | 
                
                 | 
                                    "URI",  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    164
                 | 
                                    
                                                     | 
                
                 | 
                                    "Label",  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    165
                 | 
                                    
                                                     | 
                
                 | 
                                    "Support",  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    166
                 | 
                                    
                                                     | 
                
                 | 
                                    "True_positives",  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    167
                 | 
                                    
                                                     | 
                
                 | 
                                    "False_positives",  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    168
                 | 
                                    
                                                     | 
                
                 | 
                                    "False_negatives",  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    169
                 | 
                                    
                                                     | 
                
                 | 
                                    "Precision",  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    170
                 | 
                                    
                                                     | 
                
                 | 
                                    "Recall",  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    171
                 | 
                                    
                                                     | 
                
                 | 
                                    "F1_score",  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    172
                 | 
                                    
                                                     | 
                
                 | 
                                ]  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    173
                 | 
                                    
                                                     | 
                
                 | 
                            ),  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    174
                 | 
                                    
                                                     | 
                
                 | 
                            file=results_file,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    175
                 | 
                                    
                                                     | 
                
                 | 
                        )  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    176
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    177
                 | 
                                    
                                                     | 
                
                 | 
                    def _result_per_subject_body(self, zipped_results, results_file):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    178
                 | 
                                    
                                                     | 
                
                 | 
                        for row in zipped_results:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    179
                 | 
                                    
                                                     | 
                
                 | 
                            print("\t".join((str(e) for e in row)), file=results_file) | 
            
                            
                    | 
                        
                     | 
                     | 
                     | 
                    
                                                                                                    
                        
                         
                                                                                        
                                                                                     
                     | 
                
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    180
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    181
                 | 
                                    
                                                     | 
                
                 | 
                    def output_result_per_subject(self, y_true, y_pred, results_file, language):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    182
                 | 
                                    
                                                     | 
                
                 | 
                        """Write results per subject (non-aggregated)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    183
                 | 
                                    
                                                     | 
                
                 | 
                        to outputfile results_file, using labels in the given language"""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    184
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    185
                 | 
                                    
                                                     | 
                
                 | 
                        y_pred = y_pred.T > 0.0  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    186
                 | 
                                    
                                                     | 
                
                 | 
                        y_true = y_true.T  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    187
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    188
                 | 
                                    
                                                     | 
                
                 | 
                        true_pos = y_true.multiply(y_pred).sum(axis=1)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    189
                 | 
                                    
                                                     | 
                
                 | 
                        false_pos = (y_true < y_pred).sum(axis=1)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    190
                 | 
                                    
                                                     | 
                
                 | 
                        false_neg = (y_true > y_pred).sum(axis=1)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    191
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    192
                 | 
                                    
                                                     | 
                
                 | 
                        with np.errstate(invalid="ignore"):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    193
                 | 
                                    
                                                     | 
                
                 | 
                            precision = np.nan_to_num(true_pos / (true_pos + false_pos))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    194
                 | 
                                    
                                                     | 
                
                 | 
                            recall = np.nan_to_num(true_pos / (true_pos + false_neg))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    195
                 | 
                                    
                                                     | 
                
                 | 
                            f1_score = np.nan_to_num(2 * (precision * recall) / (precision + recall))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    196
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    197
                 | 
                                    
                                                     | 
                
                 | 
                        zipped = zip(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    198
                 | 
                                    
                                                     | 
                
                 | 
                            [subj.uri for subj in self._subject_index],  # URI  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    199
                 | 
                                    
                                                     | 
                
                 | 
                            [subj.labels[language] for subj in self._subject_index],  # Label  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    200
                 | 
                                    
                                                     | 
                
                 | 
                            y_true.sum(axis=1),  # Support  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    201
                 | 
                                    
                                                     | 
                
                 | 
                            true_pos,  # True positives  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    202
                 | 
                                    
                                                     | 
                
                 | 
                            false_pos,  # False positives  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    203
                 | 
                                    
                                                     | 
                
                 | 
                            false_neg,  # False negatives  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    204
                 | 
                                    
                                                     | 
                
                 | 
                            precision,  # Precision  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    205
                 | 
                                    
                                                     | 
                
                 | 
                            recall,  # Recall  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    206
                 | 
                                    
                                                     | 
                
                 | 
                            f1_score,  # F1 score  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    207
                 | 
                                    
                                                     | 
                
                 | 
                        )  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    208
                 | 
                                    
                                                     | 
                
                 | 
                        self._result_per_subject_header(results_file)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    209
                 | 
                                    
                                                     | 
                
                 | 
                        self._result_per_subject_body(zipped, results_file)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    210
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    211
                 | 
                                    
                                                     | 
                
                 | 
                    def results(self, metrics=[], results_file=None, language=None):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    212
                 | 
                                    
                                                     | 
                
                 | 
                        """evaluate a set of selected subjects against a gold standard using  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    213
                 | 
                                    
                                                     | 
                
                 | 
                        different metrics. If metrics is empty, use all available metrics.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    214
                 | 
                                    
                                                     | 
                
                 | 
                        If results_file (file object) given, write results per subject to it  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    215
                 | 
                                    
                                                     | 
                
                 | 
                        with labels expressed in the given language."""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    216
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    217
                 | 
                                    
                                                     | 
                
                 | 
                        if not self._suggestion_arrays:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    218
                 | 
                                    
                                                     | 
                
                 | 
                            raise NotSupportedException("cannot evaluate empty corpus") | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    219
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    220
                 | 
                                    
                                                     | 
                
                 | 
                        y_pred = scipy.sparse.csr_array(scipy.sparse.vstack(self._suggestion_arrays))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    221
                 | 
                                    
                                                     | 
                
                 | 
                        y_true = scipy.sparse.csr_array(scipy.sparse.vstack(self._gold_subject_arrays))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    222
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    223
                 | 
                                    
                                                     | 
                
                 | 
                        results = self._evaluate_samples(y_true, y_pred, metrics)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    224
                 | 
                                    
                                                     | 
                
                 | 
                        results["Documents evaluated"] = int(y_true.shape[0])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    225
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    226
                 | 
                                    
                                                     | 
                
                 | 
                        if results_file:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    227
                 | 
                                    
                                                     | 
                
                 | 
                            self.output_result_per_subject(y_true, y_pred, results_file, language)  | 
            
            
                                                                                                            
                                                                
            
                                    
            
            
                | 
                    228
                 | 
                                    
                                                     | 
                
                 | 
                        return results  | 
            
            
                                                        
            
                                    
            
            
                | 
                    229
                 | 
                                    
                                                     | 
                
                 | 
                 |