1
|
|
|
"""Classes for supporting subject corpora expressed as directories or files""" |
2
|
|
|
|
3
|
|
|
from __future__ import annotations |
4
|
|
|
|
5
|
|
|
import csv |
6
|
|
|
import os.path |
7
|
|
|
from typing import TYPE_CHECKING, Any |
8
|
|
|
|
9
|
|
|
import annif |
10
|
|
|
import annif.util |
11
|
|
|
|
12
|
|
|
from .skos import serialize_subjects_to_skos |
13
|
|
|
from .types import Subject, SubjectCorpus |
14
|
|
|
|
15
|
|
|
if TYPE_CHECKING: |
16
|
|
|
from collections.abc import Generator, Iterator |
17
|
|
|
|
18
|
|
|
import numpy as np |
19
|
|
|
|
20
|
|
|
from annif.vocab import SubjectIndex |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
logger = annif.logger.getChild("subject") |
24
|
|
|
logger.addFilter(annif.util.DuplicateFilter()) |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
class SubjectFileTSV(SubjectCorpus): |
28
|
|
|
"""A monolingual subject vocabulary stored in a TSV file.""" |
29
|
|
|
|
30
|
|
|
def __init__(self, path: str, language: str) -> None: |
31
|
|
|
"""initialize the SubjectFileTSV given a path to a TSV file and the |
32
|
|
|
language of the vocabulary""" |
33
|
|
|
|
34
|
|
|
self.path = path |
35
|
|
|
self.language = language |
36
|
|
|
|
37
|
|
|
def _parse_line(self, line: str) -> Iterator[Subject]: |
38
|
|
|
vals = line.strip().split("\t", 2) |
39
|
|
|
clean_uri = annif.util.cleanup_uri(vals[0]) |
40
|
|
|
label = vals[1] if len(vals) >= 2 else None |
41
|
|
|
labels = {self.language: label} if label else None |
42
|
|
|
notation = vals[2] if len(vals) >= 3 else None |
43
|
|
|
yield Subject(uri=clean_uri, labels=labels, notation=notation) |
44
|
|
|
|
45
|
|
|
@property |
46
|
|
|
def languages(self) -> list[str]: |
47
|
|
|
return [self.language] |
48
|
|
|
|
49
|
|
|
@property |
50
|
|
|
def subjects(self) -> Generator: |
51
|
|
|
with open(self.path, encoding="utf-8-sig") as subjfile: |
52
|
|
|
for line in subjfile: |
53
|
|
|
yield from self._parse_line(line) |
54
|
|
|
|
55
|
|
|
def save_skos(self, path: str) -> None: |
56
|
|
|
"""Save the contents of the subject vocabulary into a SKOS/Turtle |
57
|
|
|
file with the given path name.""" |
58
|
|
|
serialize_subjects_to_skos(self.subjects, path) |
59
|
|
|
|
60
|
|
|
|
61
|
|
|
class SubjectFileCSV(SubjectCorpus): |
62
|
|
|
"""A multilingual subject vocabulary stored in a CSV file.""" |
63
|
|
|
|
64
|
|
|
def __init__(self, path: str) -> None: |
65
|
|
|
"""initialize the SubjectFileCSV given a path to a CSV file""" |
66
|
|
|
self.path = path |
67
|
|
|
|
68
|
|
|
def _parse_row(self, row: dict[str, str]) -> Iterator[Subject]: |
69
|
|
|
labels = { |
70
|
|
|
fname.replace("label_", ""): value or None |
71
|
|
|
for fname, value in row.items() |
72
|
|
|
if fname.startswith("label_") |
73
|
|
|
} |
74
|
|
|
|
75
|
|
|
# if there are no labels in any language, set labels to None |
76
|
|
|
# indicating a deprecated subject |
77
|
|
|
if set(labels.values()) == {None}: |
78
|
|
|
labels = None |
79
|
|
|
|
80
|
|
|
yield Subject( |
81
|
|
|
uri=annif.util.cleanup_uri(row["uri"]), |
82
|
|
|
labels=labels, |
83
|
|
|
notation=row.get("notation", None) or None, |
84
|
|
|
) |
85
|
|
|
|
86
|
|
|
@property |
87
|
|
|
def languages(self) -> list[str]: |
88
|
|
|
# infer the supported languages from the CSV column names |
89
|
|
|
with open(self.path, encoding="utf-8-sig") as csvfile: |
90
|
|
|
reader = csv.reader(csvfile) |
91
|
|
|
fieldnames = next(reader, None) |
92
|
|
|
|
93
|
|
|
return [ |
94
|
|
|
fname.replace("label_", "") |
95
|
|
|
for fname in fieldnames |
96
|
|
|
if fname.startswith("label_") |
97
|
|
|
] |
98
|
|
|
|
99
|
|
|
@property |
100
|
|
|
def subjects(self) -> Generator: |
101
|
|
|
with open(self.path, encoding="utf-8-sig") as csvfile: |
102
|
|
|
reader = csv.DictReader(csvfile) |
103
|
|
|
for row in reader: |
104
|
|
|
yield from self._parse_row(row) |
105
|
|
|
|
106
|
|
|
def save_skos(self, path: str) -> None: |
107
|
|
|
"""Save the contents of the subject vocabulary into a SKOS/Turtle |
108
|
|
|
file with the given path name.""" |
109
|
|
|
serialize_subjects_to_skos(self.subjects, path) |
110
|
|
|
|
111
|
|
|
@staticmethod |
112
|
|
|
def is_csv_file(path: str) -> bool: |
113
|
|
|
"""return True if the path looks like a CSV file""" |
114
|
|
|
|
115
|
|
|
return os.path.splitext(path)[1].lower() == ".csv" |
116
|
|
|
|
117
|
|
|
|
118
|
|
|
class SubjectSet: |
119
|
|
|
"""Represents a set of subjects for a document.""" |
120
|
|
|
|
121
|
|
|
def __init__(self, subject_ids: Any | None = None) -> None: |
122
|
|
|
"""Create a SubjectSet and optionally initialize it from an iterable |
123
|
|
|
of subject IDs""" |
124
|
|
|
|
125
|
|
|
if subject_ids: |
126
|
|
|
# use set comprehension to eliminate possible duplicates |
127
|
|
|
self._subject_ids = list( |
128
|
|
|
{subject_id for subject_id in subject_ids if subject_id is not None} |
129
|
|
|
) |
130
|
|
|
else: |
131
|
|
|
self._subject_ids = [] |
132
|
|
|
|
133
|
|
|
def __len__(self) -> int: |
134
|
|
|
return len(self._subject_ids) |
135
|
|
|
|
136
|
|
|
def __getitem__(self, idx: int) -> int: |
137
|
|
|
return self._subject_ids[idx] |
138
|
|
|
|
139
|
|
|
def __bool__(self) -> bool: |
140
|
|
|
return bool(self._subject_ids) |
141
|
|
|
|
142
|
|
|
def __eq__(self, other: Any) -> bool: |
143
|
|
|
if isinstance(other, SubjectSet): |
144
|
|
|
return self._subject_ids == other._subject_ids |
145
|
|
|
|
146
|
|
|
return False |
147
|
|
|
|
148
|
|
|
@classmethod |
149
|
|
|
def from_string( |
150
|
|
|
cls, subj_data: str, subject_index: SubjectIndex, language: str |
151
|
|
|
) -> SubjectSet: |
152
|
|
|
subject_ids = set() |
153
|
|
|
for line in subj_data.splitlines(): |
154
|
|
|
uri, label = cls._parse_line(line) |
155
|
|
|
if uri is not None: |
156
|
|
|
subject_ids.add(subject_index.by_uri(uri)) |
157
|
|
|
else: |
158
|
|
|
subject_ids.add(subject_index.by_label(label, language)) |
159
|
|
|
return cls(subject_ids) |
160
|
|
|
|
161
|
|
|
@staticmethod |
162
|
|
|
def _parse_line( |
163
|
|
|
line: str, |
164
|
|
|
) -> tuple[str | None, str | None]: |
165
|
|
|
uri = label = None |
166
|
|
|
vals = line.split("\t") |
167
|
|
|
for val in vals: |
168
|
|
|
val = val.strip() |
169
|
|
|
if val == "": |
170
|
|
|
continue |
171
|
|
|
if val.startswith("<") and val.endswith(">"): # URI |
172
|
|
|
uri = val[1:-1] |
173
|
|
|
continue |
174
|
|
|
label = val |
175
|
|
|
break |
176
|
|
|
return uri, label |
177
|
|
|
|
178
|
|
|
def as_vector( |
179
|
|
|
self, size: int | None = None, destination: np.ndarray | None = None |
|
|
|
|
180
|
|
|
) -> np.ndarray: |
181
|
|
|
"""Return the hits as a one-dimensional NumPy array in sklearn |
182
|
|
|
multilabel indicator format. Use destination array if given (not |
183
|
|
|
None), otherwise create and return a new one of the given size.""" |
184
|
|
|
|
185
|
|
|
if destination is None: |
186
|
|
|
import numpy as np |
187
|
|
|
|
188
|
|
|
assert size is not None and size > 0 |
189
|
|
|
destination = np.zeros(size, dtype=bool) |
190
|
|
|
|
191
|
|
|
destination[list(self._subject_ids)] = True |
192
|
|
|
|
193
|
|
|
return destination |
194
|
|
|
|