1
|
|
|
"""Annif backend using Yake keyword extraction""" |
2
|
|
|
# TODO Mention GPLv3 license also here? |
3
|
|
|
|
4
|
|
|
import yake |
5
|
|
|
import os.path |
6
|
|
|
from collections import defaultdict |
7
|
|
|
from rdflib.namespace import SKOS, RDF, OWL |
8
|
|
|
import rdflib |
9
|
|
|
from . import backend |
10
|
|
|
from annif.suggestion import SubjectSuggestion, ListSuggestionResult |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
class YakeBackend(backend.AnnifBackend): |
14
|
|
|
"""Yake based backend for Annif""" |
15
|
|
|
name = "yake" |
16
|
|
|
needs_subject_index = False |
17
|
|
|
|
18
|
|
|
# defaults for uninitialized instances |
19
|
|
|
_index = None |
20
|
|
|
_graph = None |
21
|
|
|
INDEX_FILE = 'yake-index' |
22
|
|
|
|
23
|
|
|
DEFAULT_PARAMETERS = { |
24
|
|
|
'max_ngram_size': 4, |
25
|
|
|
'deduplication_threshold': 0.9, |
26
|
|
|
'deduplication_algo': 'levs', |
27
|
|
|
'window_size': 1, |
28
|
|
|
'num_keywords': 100, |
29
|
|
|
'features': None, |
30
|
|
|
} |
31
|
|
|
|
32
|
|
|
def default_params(self): |
33
|
|
|
params = backend.AnnifBackend.DEFAULT_PARAMETERS.copy() |
34
|
|
|
params.update(self.DEFAULT_PARAMETERS) |
35
|
|
|
return params |
36
|
|
|
|
37
|
|
|
@property |
38
|
|
|
def is_trained(self): |
39
|
|
|
return True |
40
|
|
|
|
41
|
|
|
def initialize(self): |
42
|
|
|
self._initialize_index() |
43
|
|
|
self._kw_extractor = yake.KeywordExtractor( |
44
|
|
|
lan=self.project.language, |
45
|
|
|
n=self.params['max_ngram_size'], |
46
|
|
|
dedupLim=self.params['deduplication_threshold'], |
47
|
|
|
dedupFunc=self.params['deduplication_algo'], |
48
|
|
|
windowsSize=self.params['window_size'], |
49
|
|
|
top=self.params['num_keywords'], |
50
|
|
|
features=self.params['features']) |
51
|
|
|
|
52
|
|
|
def _initialize_index(self): |
53
|
|
|
if self._index is None: |
54
|
|
|
path = os.path.join(self.datadir, self.INDEX_FILE) |
55
|
|
|
if os.path.exists(path): |
56
|
|
|
self._index = self._load_index(path) |
57
|
|
|
self.info( |
58
|
|
|
f'Loaded index from {path} with {len(self._index)} labels') |
59
|
|
|
else: |
60
|
|
|
self.info('Creating index') |
61
|
|
|
self._create_index() |
62
|
|
|
self._save_index(path) |
63
|
|
|
self.info(f'Created index with {len(self._index)} labels') |
64
|
|
|
|
65
|
|
|
@property |
66
|
|
|
def graph(self): |
67
|
|
|
if self._graph is None: |
68
|
|
|
# TODO use as_graph() that is now available |
69
|
|
|
# self._graph = vocab.as_graph() |
70
|
|
|
self._graph = rdflib.Graph() |
71
|
|
|
path = os.path.join(self.project.vocab.datadir, 'subjects.ttl') |
72
|
|
|
self.info('Loading graph from {}'.format(path)) |
73
|
|
|
self._graph.load(path, format=rdflib.util.guess_format(path)) |
74
|
|
|
return self._graph |
75
|
|
|
|
76
|
|
|
def _create_index(self): |
77
|
|
|
# TODO Should index creation & saving be done on loadvoc command? |
78
|
|
|
# Or saving at all? It takes about 1 min to create the index |
79
|
|
|
index = defaultdict(set) |
80
|
|
|
for predicate in [SKOS.prefLabel, SKOS.altLabel, SKOS.hiddenLabel]: |
81
|
|
|
for concept in self.graph.subjects(RDF.type, SKOS.Concept): |
82
|
|
|
if (concept, OWL.deprecated, rdflib.Literal(True)) \ |
83
|
|
|
in self.graph: |
84
|
|
|
continue |
85
|
|
|
for label in self.graph.objects(concept, predicate): |
86
|
|
|
if not label.language == self.project.language: |
87
|
|
|
continue |
88
|
|
|
uri = str(concept) |
89
|
|
|
label = str(label) |
90
|
|
|
lemmatized_label = self._lemmatize_phrase(label) |
91
|
|
|
lemmatized_label = self._sort_phrase(lemmatized_label) |
92
|
|
|
index[lemmatized_label].add(uri) |
93
|
|
|
index.pop('', None) # Remove possible empty string entry |
94
|
|
|
self._index = dict(index) |
95
|
|
|
|
96
|
|
|
def _save_index(self, path): |
97
|
|
|
with open(path, 'w', encoding='utf-8') as indexfile: |
98
|
|
|
for label, uris in self._index.items(): |
99
|
|
|
line = label + '\t' + ' '.join(uris) |
100
|
|
|
print(line, file=indexfile) |
101
|
|
|
|
102
|
|
|
def _load_index(self, path): |
103
|
|
|
index = dict() |
104
|
|
|
with open(path, 'r', encoding='utf-8') as indexfile: |
105
|
|
|
for line in indexfile: |
106
|
|
|
label, uris = line.strip().split('\t') |
107
|
|
|
index[label] = uris.split() |
108
|
|
|
return index |
109
|
|
|
|
110
|
|
|
def _sort_phrase(self, phrase): |
111
|
|
|
words = phrase.split() |
112
|
|
|
return ' '.join(sorted(words)) |
113
|
|
|
|
114
|
|
|
def _lemmatize_phrase(self, phrase): |
115
|
|
|
normalized = [] |
116
|
|
|
for word in phrase.split(): |
117
|
|
|
normalized.append( |
118
|
|
|
self.project.analyzer.normalize_word(word).lower()) |
119
|
|
|
return ' '.join(normalized) |
120
|
|
|
|
121
|
|
|
def _keyphrases2suggestions(self, keyphrases): |
122
|
|
|
suggestions = [] |
123
|
|
|
not_matched = [] |
124
|
|
|
for kp, score in keyphrases: |
125
|
|
|
uris = self._keyphrase2uris(kp) |
126
|
|
|
for uri in uris: |
127
|
|
|
label = self.project.subjects.uris_to_labels([uri])[0] |
128
|
|
|
suggestions.append( |
129
|
|
|
(uri, label, self._transform_score(score))) |
130
|
|
|
if not uris: |
131
|
|
|
not_matched.append((kp, self._transform_score(score))) |
132
|
|
|
# Remove duplicate uris, combining the scores |
133
|
|
|
suggestions = self._combine_suggestions(suggestions) |
134
|
|
|
self.debug('Keyphrases not matched:\n' + '\t'.join( |
135
|
|
|
[x[0] + ' ' + str(x[1]) for x |
136
|
|
|
in sorted(not_matched, reverse=True, key=lambda x: x[1])])) |
137
|
|
|
return suggestions |
138
|
|
|
|
139
|
|
|
def _keyphrase2uris(self, keyphrase): |
140
|
|
|
keyphrase = self._lemmatize_phrase(keyphrase) |
141
|
|
|
keyphrase = self._sort_phrase(keyphrase) |
142
|
|
|
return self._index.get(keyphrase, []) |
143
|
|
|
|
144
|
|
|
def _transform_score(self, score): |
145
|
|
|
# TODO if score<0: |
146
|
|
|
return 1.0 / (score + 1) |
147
|
|
|
|
148
|
|
|
def _combine_suggestions(self, suggestions): |
149
|
|
|
combined_suggestions = {} |
150
|
|
|
for uri, label, score in suggestions: |
151
|
|
|
if uri not in combined_suggestions: |
152
|
|
|
combined_suggestions[uri] = (label, score) |
153
|
|
|
else: |
154
|
|
|
old_score = combined_suggestions[uri][1] |
155
|
|
|
conflated_score = self._conflate_scores(score, old_score) |
156
|
|
|
combined_suggestions[uri] = (label, conflated_score) |
157
|
|
|
combined_suggestions = [(uri, *label_score) for uri, label_score |
158
|
|
|
in combined_suggestions.items()] |
159
|
|
|
return combined_suggestions |
160
|
|
|
|
161
|
|
|
def _conflate_scores(self, score1, score2): |
162
|
|
|
# https://stats.stackexchange.com/questions/194878/combining-two-probability-scores/194884 |
163
|
|
|
return score1 * score2 / (score1 * score2 + (1-score1) * (1-score2)) |
164
|
|
|
|
165
|
|
|
def _suggest(self, text, params): |
166
|
|
|
self.debug( |
167
|
|
|
f'Suggesting subjects for text "{text[:20]}..." (len={len(text)})') |
168
|
|
|
limit = int(params['limit']) |
169
|
|
|
|
170
|
|
|
keywords = self._kw_extractor.extract_keywords(text) |
171
|
|
|
suggestions = self._keyphrases2suggestions(keywords) |
172
|
|
|
|
173
|
|
|
subject_suggestions = [SubjectSuggestion( |
174
|
|
|
uri=uri, |
175
|
|
|
label=label, |
176
|
|
|
notation=None, # TODO Should notation be fetched to here? |
177
|
|
|
score=score) |
178
|
|
|
for uri, label, score in suggestions[:limit] if score > 0.0] |
179
|
|
|
return ListSuggestionResult.create_from_index(subject_suggestions, |
180
|
|
|
self.project.subjects) |
181
|
|
|
|